Development of advanced materials from industrial waste, with high thermal performance

[1]  D. Panias,et al.  Production, Properties and Performance of Slag-Based, Geopolymer Foams , 2021, Minerals.

[2]  P. Louda,et al.  The Fabrication of Geopolymer Foam Composites Incorporating Coke Dust Waste , 2020, Processes.

[3]  H. L. Chi,et al.  Water Absorption Properties of Geopolymer Foam after Being Impregnated with Hydrophobic Agents , 2019, Materials.

[4]  D. Panias,et al.  Development of lightweight insulating building materials from perlite wastes , 2019, Materiales de Construcción.

[5]  Xiaoming Huang,et al.  Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method , 2018, Ceramics International.

[6]  Xudong Cheng,et al.  Experimental investigation on the influencing factors of preparing porous fly ash-based geopolymer for insulation material , 2018, Energy and Buildings.

[7]  D. Panias,et al.  Experimental Evaluation of Efficient Si Dissolution from Perlite at Low Level Activator’s Concentration , 2018 .

[8]  S. Dhara,et al.  Coagulant assisted foaming – A method for cellular Ti6Al4V: Influence of microstructure on mechanical properties , 2017 .

[9]  D. Panias,et al.  Characterization of the properties of perlite geopolymer pastes , 2016 .

[10]  Hao Wang,et al.  The Pore Characteristics of Geopolymer Foam Concrete and Their Impact on the Compressive Strength and Modulus , 2016, Front. Mater..

[11]  V. Ducman,et al.  Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents , 2016 .

[12]  Hao Wang,et al.  Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete , 2015 .

[13]  Maria Chiara Bignozzi,et al.  A comparison between different foaming methods for the synthesis of light weight geopolymers , 2014 .

[14]  A. Fameau,et al.  Effect of particles and aggregated structures on the foam stability and aging , 2014 .

[15]  H. Khater Effect of silica fume on the characterization of the geopolymer materials , 2013 .

[16]  Yiannis Pontikes,et al.  Slags with a high Al and Fe content as precursors for inorganic polymers , 2013 .

[17]  Erich D. Rodríguez,et al.  Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends , 2011, Journal of Materials Science.

[18]  K. Komnitsas,et al.  Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers. , 2009, Journal of hazardous materials.

[19]  Kostas Komnitsas,et al.  Geopolymerisation: A review and prospects for the minerals industry , 2007 .

[20]  Dimitrios Panias,et al.  EFFECT OF SYNTHESIS PARAMETERS ON THE MECHANICAL PROPERTIES OF FLY ASH-BASED GEOPOLYMERS , 2007 .

[21]  V. Sirivivatnanon,et al.  Kinetics of geopolymerization: Role of Al2O3 and SiO2 , 2007 .

[22]  K. Ramamurthy,et al.  Air‐void characterisation of foam concrete , 2007 .

[23]  J. Deventer,et al.  The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation , 2005 .

[24]  F. Puertas,et al.  Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator , 2003 .

[25]  Humberto R. Roman,et al.  MICROSTRUCTURAL INVESTIGATION OF A SILICA FUME–CEMENT–LIME MORTAR , 2003 .

[26]  Dimitris Panias,et al.  The fire resistance of alkali-activated cement-basedconcrete binders , 2015 .

[27]  I. Maragkos,et al.  Synthesis of ferronickel slag-based geopolymers , 2009 .

[28]  Chen Zong. Lee Properties of lightweight concrete , 2009 .