On the Use of Information Theory for Assessing Molecular Diversity
暂无分享,去创建一个
[1] Dimitris K. Agrafiotis,et al. Stochastic Algorithms for Maximizing Molecular Diversity , 1997, J. Chem. Inf. Comput. Sci..
[2] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[3] James M. Keller,et al. The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..
[4] H. Kubinyi. QSAR : Hansch analysis and related approaches , 1993 .
[5] H. Kubinyi. QSAR: Hansch Analysis and Related Approaches: Kubinyi/QSAR , 1993 .
[6] Marvin Johnson,et al. Concepts and applications of molecular similarity , 1990 .
[7] Mauro Barni,et al. Comments on "A possibilistic approach to clustering" , 1996, IEEE Trans. Fuzzy Syst..
[8] James M. Keller,et al. A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..
[9] Lila L. Gatlin,et al. Information theory and the living system , 1972 .
[10] Shu-Kun Lin. Molecular Diversity Assessment: Logarithmic Relations of Information and Species Diversity and Logarithmic Relations of Entropy and Indistinguishability after Rejection of Gibbs Paradox of Entropy of Mixing , 1996 .