Density Estimation, Stochastic Processes and Prior Information

SUMMARY A method is proposed for the non-parametric estimation of a probability density, based upon a finite number of observations and prior information about the smoothness of the density. A logistic density transform and a reproducing inner product from the first-order autoregressive stochastic process are employed to represent prior information that the derivative of the transform is unlikely to change radically within small intervals. The posterior estimate of the density possesses a continuous second derivative; it typically satisfies the frequentist property of asymptotic consistency. A direct analogy is demonstrated with a smoothing method for the time-dependent Poisson process; this is similar in spirit to the normal theory Kalman filter. A procedure for grouped observations in a histogram provides an alternative to the histospline method of Boneva, Kendall and Stefanov. Five practical examples are presented, including two investigations of normality, an analysis of pedestrian arrivals at a Pelican crossing and a histogram smoothing method for mine explosions data.

[1]  H. S. Carslaw. Introduction to the Mathematical Theory of the Conduction of Heat in Solids , 1922 .

[2]  E. S. Pearson,et al.  THE TIME INTERVALS BETWEEN INDUSTRIAL ACCIDENTS , 1952 .

[3]  Anders Hald,et al.  Statistical Theory with Engineering Applications , 1952 .

[4]  I. Good Significance Tests in Parallel and in Series , 1958 .

[5]  P. Whittle On the Smoothing of Probability Density Functions , 1958 .

[6]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[7]  E. Parzen Regression Analysis of Continuous Parameter Time Series , 1961 .

[8]  E. Parzen An Approach to Time Series Analysis , 1961 .

[9]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[10]  G. W. Snedecor Statistical Methods , 1964 .

[11]  L. Ahrens,et al.  Observations on the Fe-Si-Mg relationship in chondrites , 1965 .

[12]  H. D. Miller,et al.  The Theory Of Stochastic Processes , 1977, The Mathematical Gazette.

[13]  Richard Bellman,et al.  Introduction to the mathematical theory of control processes , 1967 .

[14]  B. M. Hill,et al.  Posterior Distribution of Percentiles: Bayes' Theorem for Sampling From a Population , 1968 .

[15]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[16]  J. Dickey Smoothing by Cheating , 1969 .

[17]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[18]  David Lindley,et al.  Optimal Statistical Decisions , 1971 .

[19]  I. Good Nonparametric roughness penalties for probability densities , 1971 .

[20]  Tom Leonard,et al.  A Bayesian method for histograms , 1973 .

[21]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[22]  J. F. Crook,et al.  The Bayes/Non-Bayes Compromise and the Multinomial Distribution , 1974 .

[23]  G. Wahba Optimal Convergence Properties of Variable Knot, Kernel, and Orthogonal Series Methods for Density Estimation. , 1975 .

[24]  Donald L. Snyder,et al.  Random point processes , 1975 .

[25]  R. Tapia,et al.  Nonparametric Maximum Likelihood Estimation of Probability Densities by Penalty Function Methods , 1975 .

[26]  Michael Goldstein,et al.  A Note on Some Bayesian Nonparametric Estimates , 1975 .

[27]  D. Vere-Jones On Updating Algorithms and Inference for Stochastic Point Processes , 1975, Journal of Applied Probability.

[28]  A. F. Smith A Bayesian approach to inference about a change-point in a sequence of random variables , 1975 .

[29]  G. Wahba Interpolating Spline Methods for Density Estimation I. Equi-Spaced Knots , 1975 .

[30]  J. D. Griffiths,et al.  A Mathematical Model of a Pelican Crossing , 1976 .

[31]  I. Good On the Application of Symmetric Dirichlet Distributions and their Mixtures to Contingency Tables , 1976 .

[32]  “Squeeze” Significance Tests , 1976 .

[33]  M. Stone An Asymptotic Equivalence of Choice of Model by Cross‐Validation and Akaike's Criterion , 1977 .

[34]  E. Parzen Nonparametric Statistical Data Science: A Unified Approach Based on Density Estimation and Testing for 'White Noise'. , 1977 .

[35]  I. J. Good,et al.  The enumeration of arrays and a generalization related to contingency tables , 1977, Discret. Math..

[36]  J. Zidek,et al.  Bayes Linear Estimators of the Intensity Function of the Nonstationary Poisson Process , 1977 .

[37]  Tom Leonard,et al.  A Bayesian Approach to Some Multinomial Estimation and Pretesting Problems , 1977 .

[38]  G. Wahba Optimal Smoothing of Density Estimates , 1977 .

[39]  B. Silverman,et al.  Density Ratios, Empirical Likelihood and Cot Death , 1978 .

[40]  B. Silverman,et al.  Choosing the window width when estimating a density , 1978 .

[41]  Statistical methods , 1980 .