Dynamic Changes in Phase-Amplitude Coupling Facilitate Spatial Attention Control in Fronto-Parietal Cortex

Electrocorticography reveals how coupling between two frequencies of neuronal oscillation allows the frontal and parietal areas of the cortex to control visual attention from moment to moment in the human brain.

[1]  G. Karmos,et al.  Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection , 2008, Science.

[2]  Pascal Fries,et al.  A Microsaccadic Rhythm Modulates Gamma-Band Synchronization and Behavior , 2009, The Journal of Neuroscience.

[3]  M. Goldberg,et al.  Saccades, salience and attention: the role of the lateral intraparietal area in visual behavior. , 2006, Progress in brain research.

[4]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[5]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[6]  R. Kliegl,et al.  Human Microsaccade-Related Visual Brain Responses , 2009, The Journal of Neuroscience.

[7]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[8]  J. Palva,et al.  New vistas for alpha-frequency band oscillations. , 2007, Trends in neurosciences.

[9]  E. Miller,et al.  Response to Comment on "Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices" , 2007, Science.

[10]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[11]  S. Bentin,et al.  Different Effects of Voluntary and Involuntary Attention on EEG Activity in the Gamma Band , 2007, The Journal of Neuroscience.

[12]  Y. Saalmann,et al.  The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands , 2012, Science.

[13]  Ernst Niebur,et al.  High-frequency gamma activity (80–150Hz) is increased in human cortex during selective attention , 2008, Clinical Neurophysiology.

[14]  G. Pfurtscheller Handbook of electroencephalography and clinical neurophysiology , 1978 .

[15]  Adriano B. L. Tort,et al.  Theta–gamma coupling increases during the learning of item–context associations , 2009, Proceedings of the National Academy of Sciences.

[16]  A. Engel,et al.  Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention , 2008, Neuron.

[17]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[18]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[19]  Andreas K. Engel,et al.  Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception , 2011, Neuron.

[20]  P. Hazemann,et al.  Handbook of Electroencephalography and Clinical Neurophysiology , 1975 .

[21]  Nachum Soroker,et al.  Assessment of spatial attention after brain damage with a dynamic reaction time test , 2005, Journal of the International Neuropsychological Society.

[22]  Y. Saalmann,et al.  Rhythmic Sampling within and between Objects despite Sustained Attention at a Cued Location , 2013, Current Biology.

[23]  G. Sperling,et al.  Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency. , 2006, Cerebral cortex.

[24]  O. Jensen,et al.  Gamma Power Is Phase-Locked to Posterior Alpha Activity , 2008, PloS one.

[25]  Y. Tsal Movements of attention across the visual field. , 1983, Journal of experimental psychology. Human perception and performance.

[26]  R. Knight,et al.  The functional role of cross-frequency coupling , 2010, Trends in Cognitive Sciences.

[27]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[28]  J. Kaiser,et al.  Human gamma-frequency oscillations associated with attention and memory , 2007, Trends in Neurosciences.

[29]  Nick F. Ramsey,et al.  Human Motor Cortical Activity Is Selectively Phase-Entrained on Underlying Rhythms , 2012, PLoS Comput. Biol..

[30]  N. E. Crone,et al.  PW5-2 Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks , 2010, Clinical Neurophysiology.

[31]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[32]  Adriano B. L. Tort,et al.  Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task , 2008, Proceedings of the National Academy of Sciences.

[33]  Ralf Engbert,et al.  Microsaccade dynamics during covert attention , 2005, Vision Research.

[34]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[35]  G. Buzsáki,et al.  A neural coding scheme formed by the combined function of gamma and theta oscillations. , 2008, Schizophrenia bulletin.

[36]  R. Knight,et al.  Prefrontal modulation of visual processing in humans , 2000, Nature Neuroscience.

[37]  C. Schroeder,et al.  Low-frequency neuronal oscillations as instruments of sensory selection , 2009, Trends in Neurosciences.

[38]  K. Koepsell,et al.  Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies , 2010, Proceedings of the National Academy of Sciences.

[39]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[40]  Ralf Engbert,et al.  Microsaccades uncover the orientation of covert attention , 2003, Vision Research.

[41]  C. Schroeder,et al.  Tuning of the Human Neocortex to the Temporal Dynamics of Attended Events , 2011, The Journal of Neuroscience.

[42]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[43]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[44]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[45]  Christopher K. Kovach,et al.  Manifestation of ocular-muscle EMG contamination in human intracranial recordings , 2011, NeuroImage.

[46]  M. Corbetta,et al.  Frontoparietal Cortex Controls Spatial Attention through Modulation of Anticipatory Alpha Rhythms , 2009, The Journal of Neuroscience.

[47]  Krish D. Singh,et al.  A cautionary note on the interpretation of phase-locking estimates with concurrent changes in power , 2011, Clinical Neurophysiology.

[48]  R. Knight,et al.  Shifts in Gamma Phase–Amplitude Coupling Frequency from Theta to Alpha Over Posterior Cortex During Visual Tasks , 2010, Front. Hum. Neurosci..

[49]  J. Fell,et al.  Cross-frequency coupling supports multi-item working memory in the human hippocampus , 2010, Proceedings of the National Academy of Sciences.

[50]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[51]  J. Palva,et al.  New vistas for α-frequency band oscillations , 2007, Trends in Neurosciences.

[52]  J. Lisman,et al.  The Theta-Gamma Neural Code , 2013, Neuron.

[53]  S J Luck,et al.  Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. , 1990, Electroencephalography and clinical neurophysiology.

[54]  Nick F. Ramsey,et al.  Automated electrocorticographic electrode localization on individually rendered brain surfaces , 2010, Journal of Neuroscience Methods.

[55]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[56]  R. VanRullen,et al.  An oscillatory mechanism for prioritizing salient unattended stimuli , 2012, Trends in Cognitive Sciences.

[57]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[58]  Rafael Malach,et al.  Spatial and Object-Based Attention Modulates Broadband High-Frequency Responses across the Human Visual Cortical Hierarchy , 2013, The Journal of Neuroscience.

[59]  Bruce D. McCandliss,et al.  The Relation of Brain Oscillations to Attentional Networks , 2007, The Journal of Neuroscience.

[60]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[61]  Michael X. Cohen,et al.  Oscillatory Activity and Phase–Amplitude Coupling in the Human Medial Frontal Cortex during Decision Making , 2009, Journal of Cognitive Neuroscience.

[62]  S A Hillyard,et al.  Spatial gradients of visual attention: behavioral and electrophysiological evidence. , 1988, Electroencephalography and clinical neurophysiology.

[63]  P. Fries,et al.  Attention Samples Stimuli Rhythmically , 2012, Current Biology.

[64]  John J. Foxe,et al.  Oscillatory Sensory Selection Mechanisms during Intersensory Attention to Rhythmic Auditory and Visual Inputs: A Human Electrocorticographic Investigation , 2011, The Journal of Neuroscience.

[65]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[66]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[67]  J. Polich Updating P300: An integrative theory of P3a and P3b , 2007, Clinical Neurophysiology.

[68]  R. H. Jindra,et al.  Handbook of electroencephalography and clinical neurophysiology Vol. 5,B. A. Remond (ed.-in-chief). Evaluation of bioelectrical data from brain, nerve and muscle—II. M. A. B. Brazier & D. O. Walter (eds). EEG topography. H. Petsche (ed.). Elsevier, Amsterdam (1972). 84 pp , 1979, Neuroscience.

[69]  Matthias M. Müller,et al.  Selective visual-spatial attention alters induced gamma band responses in the human EEG , 1999, Clinical Neurophysiology.

[70]  Andrew D. Engell,et al.  The relationship of γ oscillations and face-specific ERPs recorded subdurally from occipitotemporal cortex. , 2011, Cerebral cortex.

[71]  Arne D. Ekstrom,et al.  Frequency–specific network connectivity increases underlie accurate spatiotemporal memory retrieval , 2013, Nature Neuroscience.

[72]  Rajesh P. N. Rao,et al.  Dynamic Modulation of Local Population Activity by Rhythm Phase in Human Occipital Cortex During a Visual Search Task , 2010, Front. Hum. Neurosci..

[73]  S J Luck,et al.  Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. , 1990, Electroencephalography and clinical neurophysiology.