Coherent Functions in Autonomous Systems

A fuzzy controller can be seen as an algorithm that, given a fuzzy set (input) and a set of linguistic rules, computes the degree of possibility of every control value. Using a valid and complete proof system for possibilistic logic, we will prove that fuzzy controllers enjoy the following property: every possibility measure that satisfies the degrees of possibility of the input and of the linguistic rules also satisfies, for every control value, the degree of possibility computed by the fuzzy controller. We will call such property the coherence between input, task description and output. A general definition of coherent function is given, and we will see that coherent functions form a class of functions that properly contains fuzzy controllers. Moreover, we will present an application of coherent functions to a task different from control, namely localization in mobile robotics.

[1]  Enrique H. Ruspini,et al.  On the semantics of fuzzy logic , 1991, Int. J. Approx. Reason..

[2]  K. I. Rosenthal Quantales and their applications , 1990 .

[3]  David Kortenkamp,et al.  Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.

[4]  Luca Boldrin,et al.  Local Possibilistic Logic , 1997, J. Appl. Non Class. Logics.

[5]  Marcelo Simoes Introduction to Fuzzy Control , 2003 .

[6]  Petr Hájek,et al.  Fuzzy inference as deduction , 1999, J. Appl. Non Class. Logics.

[7]  Wolfram Burgard,et al.  GOLEX - Bridging the Gap between Logic (GOLOG) and a Real Robot , 1998, KI.

[8]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[9]  H. Prade,et al.  Possibilistic logic , 1994 .

[10]  John L. Bell,et al.  Boolean-valued models and independence proofs in set theory , 1977 .

[11]  Alessandro Saffiotti,et al.  The uses of fuzzy logic in autonomous robot navigation , 1997, Soft Comput..

[12]  Rodney A. Brooks,et al.  Elephants don't play chess , 1990, Robotics Auton. Syst..

[13]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[14]  Giangiacomo Gerla,et al.  Fuzzy Logic: Mathematical Tools for Approximate Reasoning , 2001 .

[15]  David Poole Logic Programming for Robot Control , 1995, IJCAI.

[16]  Benjamin Kuipers,et al.  A Hierarchy of Qualitative Representations for Space , 1998, Spatial Cognition.

[17]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[18]  Paolo Bison,et al.  Sequent calculus and data fusion , 2001, Fuzzy Sets Syst..

[19]  Vilém Novák,et al.  Linguistically oriented fuzzy logic control and its design , 1995, Int. J. Approx. Reason..

[20]  Hector J. Levesque,et al.  GOLOG: A Logic Programming Language for Dynamic Domains , 1997, J. Log. Program..

[21]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[22]  Charles Elkan,et al.  The paradoxical success of fuzzy logic , 1993, IEEE Expert.

[23]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[24]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[25]  Alessandro Saffiotti,et al.  Integrating Fuzzy Geometric Maps and Topological Maps for Robot Navigation , 1999, IIA/SOCO.

[26]  Bernadette Bouchon-Meunier,et al.  Fuzzy Sets and Possibility Theory in Approximate and Plausible Reasoning , 1999 .

[27]  Paolo Bison,et al.  Sensor fusion for localization using possibility theory , 1999 .

[28]  Luca Boldrin,et al.  An Algebraic Semantics for Possibilistic Logic , 1995, UAI.

[29]  Paolo Bison,et al.  Using a structured beacon for cooperative position estimation , 1999, Robotics Auton. Syst..

[30]  Dimitar P. Filev,et al.  Fuzzy SETS AND FUZZY LOGIC , 1996 .

[31]  Wolfram Burgard,et al.  Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva , 2000, Int. J. Robotics Res..

[32]  Didier Dubois,et al.  The three semantics of fuzzy sets , 1997, Fuzzy Sets Syst..