Solving Sparse Integer Linear Systems

We propose a new algorithm to solve sparse linear systems of equations over the integers. This algorithm is based on a $p$-adic lifting technique combined with the use of block matrices with structured blocks. It achieves a sub-cubic complexity in terms of machine operations subject to a conjecture on the effectiveness of certain sparse projections. A LinBox-based implementation of this algorithm is demonstrated, and emphasizes the practical benefits of this new method over the previous state of the art.

[1]  Arne Storjohann,et al.  A BLAS based C library for exact linear algebra on integer matrices , 2005, ISSAC.

[2]  Paul S. Wang,et al.  A p-adic algorithm for univariate partial fractions , 1981, SYMSAC '81.

[3]  G. Villard A study of Coppersmith's block Wiedemann algorithm using matrix polynomials , 1997 .

[4]  Erich Kaltofen,et al.  LINBOX: A GENERIC LIBRARY FOR EXACT LINEAR ALGEBRA , 2002 .

[5]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[6]  Josef Schicho Proceedings of the 2004 international symposium on Symbolic and algebraic computation , 2004, ISSAC 2004.

[7]  Arne Storjohann,et al.  Diophantine linear system solving , 1999, ISSAC '99.

[8]  B. David Saunders,et al.  Smith normal form of dense integer matrices fast algorithms into practice , 2004, ISSAC '04.

[9]  Mark Giesbrecht,et al.  Efficient parallel solution of sparse systems of linear diophantine equations , 1997, PASCO '97.

[10]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[11]  J. Dixon Exact solution of linear equations usingP-adic expansions , 1982 .

[12]  Erich Kaltofen,et al.  Analysis of Coppersmith's Block Wiedemann Algorithm for the Parallel Solution of Sparse Linear Systems , 1993, AAECC.

[13]  Erich Kaltofen,et al.  Black box linear algebra with the linbox library , 2002 .

[14]  George Labahn,et al.  The Inverses of Block Hankel and Block Toeplitz Matrices , 1990, SIAM J. Comput..

[15]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[16]  B. D. Saunders,et al.  Efficient matrix preconditioners for black box linear algebra , 2002 .

[17]  D. Coppersmith Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .

[18]  Gilles Villard,et al.  On computing the determinant and Smith form of an integer matrix , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[19]  Arne Storjohann,et al.  Certified dense linear system solving , 2004, J. Symb. Comput..

[20]  Robert T. Moenck,et al.  Approximate algorithms to derive exact solutions to systems of linear equations , 1979, EUROSAM.

[21]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.

[22]  Arne Storjohann,et al.  The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..

[23]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[24]  Erich Kaltofen,et al.  On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.

[25]  Numerische Mathematik Exact Solution of Linear Equations Using P-Adie Expansions* , 2005 .

[26]  Jean-Guillaume Dumas,et al.  FFPACK: finite field linear algebra package , 2004, ISSAC '04.

[27]  Arne Storjohann,et al.  Certified dense linear system solving , 2004, J. Symb. Comput..

[28]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.