Measuring nanoscale stress intensity factors with an atomic force microscope

Atomic Force Microscopy images of a crack intersecting the free surface of a glass specimen are taken at different stages of subcritical propagation. From the analysis of image pairs, it is shown that a novel Integrated Digital Image Correlation technique allows to measure stress intensity factors in a quantitative fashion. Image sizes as small as 200 nm can be exploited and the surface displacement fields do not show significant deviations from linear elastic solutions down to a 10 nm distance from the crack tip. Moreover, this analysis gives access to the out-of-plane displacement of the free surface at the crack tip.

[1]  Stéphane Roux,et al.  Noise-robust Stress Intensity Factor Determination from Kinematic Field Measurements , 2008 .

[2]  M. Sutton,et al.  Effects of subpixel image restoration on digital correlation error estimates , 1988 .

[3]  S. Roux,et al.  “Finite-Element” Displacement Fields Analysis from Digital Images: Application to Portevin–Le Châtelier Bands , 2006 .

[4]  Kenji Machida,et al.  Elastic-plastic stress analysis near the crack tip by the 2-dimensional elastic-plastic hybrid method and digital image correlation , 2005, International Conference on Experimental Mechanics.

[5]  L. Ponson,et al.  Crack opening profile in DCDC specimen , 2009, 0903.5192.

[6]  Stéphane Roux,et al.  An extended and integrated digital image correlation technique applied to the analysis of fractured samples , 2009 .

[7]  S. Roux,et al.  Stress Intensity Factor Gauging by Digital Image Correlation: Application in Cyclic Fatigue , 2007 .

[8]  M. Sutton,et al.  Estimation of stress intensity factor by digital image correlation , 1987 .

[9]  O. Hopperstad,et al.  A study of localisation in dual-phase high-strength steels under dynamic loading using digital image correlation and FE analysis , 2007, 0712.3921.

[10]  Stéphane Roux,et al.  Measuring stress intensity factors with a camera: Integrated digital image correlation (I-DIC) , 2006 .

[11]  J. Lambros,et al.  Experimental determination of cohesive failure properties of a photodegradable copolymer , 2005 .

[12]  M. Bonnet,et al.  Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements , 2008 .

[13]  Henry Proudhon,et al.  Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray micro-tomography , 2006 .

[14]  Ioannis Chasiotis,et al.  Mode I and mixed mode fracture of polysilicon for MEMS , 2007 .

[15]  W. Knauss,et al.  A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy , 2002 .

[16]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .

[17]  Franz J. Giessibl,et al.  Advances in atomic force microscopy , 2003, cond-mat/0305119.

[18]  John E. Dolbow,et al.  Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks , 1998 .

[19]  Anthony Gravouil,et al.  Fatigue crack propagation: In situ visualization using X-ray microtomography and 3D simulation using the extended finite element method , 2006 .

[20]  S. Roux,et al.  Spectral approach to displacement evaluation from image analysis , 2002 .

[21]  Yuh J. Chao,et al.  Advances in Two-Dimensional and Three-Dimensional Computer Vision , 2000 .

[22]  J. Cárdenas-García,et al.  Measurement of nanodisplacements and elastic properties of MEMS via the microscopic hole method , 2005 .

[23]  Michael A. Sutton,et al.  Experimental study of crack growth in thin sheet 2024-T3 aluminum under tension-torsion loading , 2001 .

[24]  S. Wiederhorn,et al.  Finite element analysis of a crack tip in silicate glass: No evidence for a plastic zone , 2008 .

[25]  D. M. Parks A stiffness derivative finite element technique for determination of crack tip stress intensity factors , 1974 .

[26]  J. D. Helm,et al.  Digital Image Correlation for Specimens with Multiple Growing Cracks , 2008 .

[27]  Theo Fett,et al.  A fracture mechanics analysis of the double cleavage drilled compression test specimen , 2009 .

[28]  Michel Bornert,et al.  Experimental and numerical characterisation of in-plane deformation in two-phase materials ☆ , 2001 .

[29]  M. A. Sutton,et al.  Systematic errors in digital image correlation caused by intensity interpolation , 2000 .

[30]  R. Huiskes,et al.  A three-dimensional digital image correlation technique for strain measurements in microstructures. , 2004, Journal of biomechanics.

[31]  M. Ciccotti,et al.  The crack tip: a nanolab for studying confined liquids. , 2008, Physical review letters.

[32]  David M. Parks,et al.  Application of domain integral methods using tetrahedral elements to the determination of stress intensity factors , 2000 .

[33]  W. F. Ranson,et al.  Determination of displacements using an improved digital correlation method , 1983, Image Vis. Comput..

[34]  J. Lambros,et al.  Investigation of crack growth in functionally graded materials using digital image correlation , 2002 .

[35]  D. Dawicke,et al.  CTOA and crack-tunneling measurements in thin sheet 2024-T3 aluminum alloy , 1994 .

[36]  E. Schnack,et al.  On Three-dimensional Effects in Propagation of Surface-breaking Cracks , 2007 .

[37]  B. Bay,et al.  Digital volume correlation: Three-dimensional strain mapping using X-ray tomography , 1999 .

[38]  Stéphane Roux,et al.  Extended digital image correlation with crack shape optimization , 2008 .

[39]  François Hild,et al.  Controlling testing machines with digital image correlation , 2007 .

[40]  W. F. Ranson,et al.  Applications of digital-image-correlation techniques to experimental mechanics , 1985 .

[41]  I. Sinclair,et al.  Assessment of the fatigue crack closure phenomenon in damage-tolerant aluminium alloy by in-situ high-resolution synchrotron X-ray microtomography , 2003 .

[42]  Stéphane Roux,et al.  Correlation image velocimetry: a spectral approach. , 2002, Applied optics.

[43]  Marc Bonnet,et al.  Inverse problems in elasticity , 2005 .

[44]  Stuart R. Stock,et al.  Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of AlLi 2090 , 1997 .

[45]  Stéphane Roux,et al.  Three dimensional image correlation from X-Ray computed tomography of solid foam , 2008 .

[46]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[47]  Stéphane Roux,et al.  Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation. , 2002, Applied optics.

[48]  Philip J. Withers,et al.  Crack opening displacements during fatigue crack growth in Ti–SiC fibre metal matrix composites by X-ray tomography , 2006 .

[49]  Stéphane Roux,et al.  Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches , 2006 .

[50]  François Hild,et al.  Digital image correlation analysis of crack behavior in a reinforced concrete beam during a load test , 2006 .