Structure and mechanism of a bacterial host-protein citrullinating virulence factor, Porphyromonas gingivalis peptidylarginine deiminase
暂无分享,去创建一个
Theodoros Goulas | Claudia Millán | Isabel Usón | Irene Garcia-Ferrer | C. Millán | J. Potempa | P. Mydel | M. Solà | F. Veillard | T. Goulas | F. Gomis-Rüth | I. Usón | I. Garcia-Ferrer | B. Potempa | Florian Veillard | Jan Potempa | Barbara Potempa | F. Xavier Gomis-Rüth | Maria Solà | T. Kantyka | Tomasz Kantyka | Tibisay Guevara | T. Guevara | Danuta Mizgalska | Borys Szmigielski | Aneta Sroka | Piotr Mydel | D. Mizgalska | A. Sroka | B. Szmigielski | Florian Veillard
[1] Kathrin Meindl,et al. Exploiting tertiary structure through local folds for crystallographic phasing , 2013, Nature Methods.
[2] G. W. Mackenzie. Focal Infection of Dental Origin , 1927 .
[3] Yong-Wha Lee,et al. Molecular genetics of citrullinemia types I and II. , 2014, Clinica chimica acta; international journal of clinical chemistry.
[4] H. Krebs,et al. Untersuchungen über die Harnstoffbildung im Tierkörper , 2005, Klinische Wochenschrift.
[5] A. Progulske-Fox,et al. Genetic Manipulation of Porphyromonas gingivalis , 2007, Current protocols in microbiology.
[6] P. Thompson,et al. Synthesis and screening of a haloacetamidine containing library to identify PAD4 selective inhibitors. , 2012, ACS chemical biology.
[7] O. Herzberg,et al. Structural Insight into Arginine Degradation by Arginine Deiminase, an Antibacterial and Parasite Drug Target* , 2004, Journal of Biological Chemistry.
[8] R. Jonsson,et al. Porphyromonas gingivalis Facilitates the Development and Progression of Destructive Arthritis through Its Unique Bacterial Peptidylarginine Deiminase (PAD) , 2013, PLoS pathogens.
[9] Liisa Holm,et al. Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..
[10] Andrea Thorn,et al. Extending molecular-replacement solutions with SHELXE , 2013, Acta crystallographica. Section D, Biological crystallography.
[11] V. Rubio,et al. The Gene Cluster for Agmatine Catabolism of Enterococcus faecalis: Study of Recombinant Putrescine Transcarbamylase and Agmatine Deiminase and a Snapshot of Agmatine Deiminase Catalyzing Its Reaction , 2006, Journal of bacteriology.
[12] C. Ottmann,et al. Identification and structural characterization of two 14-3-3 binding sites in the human peptidylarginine deiminase type VI. , 2012, Journal of structural biology.
[13] R. Huber,et al. Crystal structure of gingipain R: an Arg‐specific bacterial cysteine proteinase with a caspase‐like fold , 1999, The EMBO journal.
[14] E. Vossenaar,et al. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.
[15] J. Enghild,et al. Peptidyl Arginine Deiminase from Porphyromonas gingivalis Abolishes Anaphylatoxin C5a Activity* , 2014, The Journal of Biological Chemistry.
[16] Clemens Vonrhein,et al. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER , 2012, Acta crystallographica. Section D, Biological crystallography.
[17] György Nagy,et al. Citrullination under physiological and pathological conditions. , 2012, Joint, bone, spine : revue du rhumatisme.
[18] Toshiyuki Shimizu,et al. Structural basis for Ca2+-induced activation of human PAD4 , 2004, Nature Structural &Molecular Biology.
[19] Manfred S. Weiss,et al. Global indicators of X-ray data quality , 2001 .
[20] M. Pepys,et al. Anti-keratin antibodies in rheumatoid arthritis: frequency and correlation with other features of the disease. , 1983, Clinical and experimental immunology.
[21] M. Karsdal,et al. Biological relevance of citrullinations: diagnostic, prognostic and therapeutic options , 2015, Autoimmunity.
[22] J. Potempa,et al. Porphyromonas gingivalis Virulence Factor Gingipain RgpB Shows a Unique Zymogenic Mechanism for Cysteine Peptidases* , 2013, The Journal of Biological Chemistry.
[23] J. Potempa,et al. Three-dimensional Structure of MecI , 2003, Journal of Biological Chemistry.
[24] J. Potempa,et al. Purification, Characterization, and Sequence Analysis of a Potential Virulence Factor from Porphyromonas gingivalis, Peptidylarginine Deiminase , 1999, Infection and Immunity.
[25] A. Casiano-Colón,et al. Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance , 1988, Applied and environmental microbiology.
[26] P. Andrew Karplus,et al. Linking Crystallographic Model and Data Quality , 2012, Science.
[27] P. Emsley,et al. Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.
[28] R. Huber,et al. Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .
[29] P. Zwart,et al. Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.
[30] Thomas Dietrich,et al. Periodontitis in systemic rheumatic diseases , 2009, Nature Reviews Rheumatology.
[31] G. Seymour,et al. Relationship between periodontal infections and systemic disease. , 2007, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.
[32] J. Potempa,et al. Gingipains, the major cysteine proteinases and virulence factors of Porphyromonas gingivalis: structure, function and assembly of multidomain protein complexes. , 2003, Current protein & peptide science.
[33] A S Rigby,et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. , 2000, Arthritis and rheumatism.
[34] Jack Snoeyink,et al. Nucleic Acids Research Advance Access published April 22, 2007 MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007 .
[35] Conrad C. Huang,et al. UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..
[36] Roy Taylor,et al. Periodontitis and diabetes: a two-way relationship , 2011, Diabetologia.
[37] W. Craigen,et al. Mitochondria: role of citrulline and arginine supplementation in MELAS syndrome. , 2014, The international journal of biochemistry & cell biology.
[38] G. Sheldrick,et al. Crystallographic ab initio protein structure solution below atomic resolution , 2009, Nature Methods.
[39] Claudia Millán,et al. Structure solution with ARCIMBOLDO using fragments derived from distant homology models , 2014, The FEBS journal.
[40] Randy J. Read,et al. Phaser crystallographic software , 2007, Journal of applied crystallography.
[41] M. Rahmatullah,et al. Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. , 1980, Analytical biochemistry.
[42] W. Vanvenrooij,et al. Autoantibodies to citrullinated proteins in rheumatoid arthritis: clinical performance and biochemical aspects of an RA-specific marker. , 2004, Clinica chimica acta; international journal of clinical chemistry.
[43] Vincent B. Chen,et al. Correspondence e-mail: , 2000 .
[44] Theodoros Goulas,et al. Combining phase information in reciprocal space for molecular replacement with partial models. , 2015, Acta crystallographica. Section D, Biological crystallography.
[45] M. Gross,et al. Protein Arginine Deiminase 2 Binds Calcium in an Ordered Fashion: Implications for Inhibitor Design , 2015, ACS chemical biology.
[46] M. Naito,et al. Identification of Porphyromonas gingivalis proteins secreted by the Por secretion system. , 2013, FEMS microbiology letters.
[47] R. Marquis,et al. Arginine deiminase system and acid adaptation of oral streptococci , 1995, Applied and environmental microbiology.
[48] Claude Ruget,et al. Developments in optics and performance at BL13-XALOC, the macromolecular crystallography beamline at the Alba Synchrotron , 2014, Journal of synchrotron radiation.
[49] A. D. Clark,et al. Crystal structures of arginine deiminase with covalent reaction intermediates; implications for catalytic mechanism. , 2004, Structure.
[50] A. W. Schüttelkopf,et al. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.
[51] B. Kobe,et al. Structure-Informed Design of an Enzymatically Inactive Vaccine Component for Group A Streptococcus , 2013, mBio.
[52] J. Chiu,et al. Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. , 2004, Nucleic acids research.
[53] Claudia Millán,et al. Macromolecular ab initio phasing enforcing secondary and tertiary structure , 2014, IUCrJ.
[54] J. Huntington,et al. Structure and Mechanism of Cysteine Peptidase Gingipain K (Kgp), a Major Virulence Factor of Porphyromonas gingivalis in Periodontitis* , 2014, The Journal of Biological Chemistry.
[55] András Falus,et al. Citrullination: a posttranslational modification in health and disease. , 2006, The international journal of biochemistry & cell biology.
[56] L. Lebioda,et al. Characterization and inactivation of an agmatine deiminase from Helicobacter pylori. , 2010, Bioorganic chemistry.
[57] K. Mizuguchi,et al. The guanidino‐group modifying enzymes: Structural basis for their diversity and commonality , 2006, Proteins.
[58] M. Radic,et al. Citrullinated Autoantigens: From Diagnostic Markers to Pathogenetic Mechanisms , 2015, Clinical Reviews in Allergy & Immunology.