Structure and mechanism of a bacterial host-protein citrullinating virulence factor, Porphyromonas gingivalis peptidylarginine deiminase

Citrullination is a post-translational modification of higher organisms that deiminates arginines in proteins and peptides. It occurs in physiological processes but also pathologies such as multiple sclerosis, fibrosis, Alzheimer’s disease and rheumatoid arthritis (RA). The reaction is catalyzed by peptidylarginine deiminases (PADs), which are found in vertebrates but not in lower organisms. RA has been epidemiologically associated with periodontal disease, whose main infective agent is Porphyromonas gingivalis. Uniquely among microbes, P. gingivalis secretes a PAD, termed PPAD (Porphyromonas peptidylarginine deiminase), which is genetically unrelated to eukaryotic PADs. Here, we studied function of PPAD and its substrate-free, substrate-complex, and substrate-mimic-complex structures. It comprises a flat cylindrical catalytic domain with five-fold α/β-propeller architecture and a C-terminal immunoglobulin-like domain. The PPAD active site is a funnel located on one of the cylinder bases. It accommodates arginines from peptide substrates after major rearrangement of a “Michaelis loop” that closes the cleft. The guanidinium and carboxylate groups of substrates are tightly bound, which explains activity of PPAD against arginines at C-termini but not within peptides. Catalysis is based on a cysteine-histidine-asparagine triad, which is shared with human PAD1-PAD4 and other guanidino-group modifying enzymes. We provide a working mechanism hypothesis based on 18 structure-derived point mutants.

[1]  Kathrin Meindl,et al.  Exploiting tertiary structure through local folds for crystallographic phasing , 2013, Nature Methods.

[2]  G. W. Mackenzie Focal Infection of Dental Origin , 1927 .

[3]  Yong-Wha Lee,et al.  Molecular genetics of citrullinemia types I and II. , 2014, Clinica chimica acta; international journal of clinical chemistry.

[4]  H. Krebs,et al.  Untersuchungen über die Harnstoffbildung im Tierkörper , 2005, Klinische Wochenschrift.

[5]  A. Progulske-Fox,et al.  Genetic Manipulation of Porphyromonas gingivalis , 2007, Current protocols in microbiology.

[6]  P. Thompson,et al.  Synthesis and screening of a haloacetamidine containing library to identify PAD4 selective inhibitors. , 2012, ACS chemical biology.

[7]  O. Herzberg,et al.  Structural Insight into Arginine Degradation by Arginine Deiminase, an Antibacterial and Parasite Drug Target* , 2004, Journal of Biological Chemistry.

[8]  R. Jonsson,et al.  Porphyromonas gingivalis Facilitates the Development and Progression of Destructive Arthritis through Its Unique Bacterial Peptidylarginine Deiminase (PAD) , 2013, PLoS pathogens.

[9]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[10]  Andrea Thorn,et al.  Extending molecular-replacement solutions with SHELXE , 2013, Acta crystallographica. Section D, Biological crystallography.

[11]  V. Rubio,et al.  The Gene Cluster for Agmatine Catabolism of Enterococcus faecalis: Study of Recombinant Putrescine Transcarbamylase and Agmatine Deiminase and a Snapshot of Agmatine Deiminase Catalyzing Its Reaction , 2006, Journal of bacteriology.

[12]  C. Ottmann,et al.  Identification and structural characterization of two 14-3-3 binding sites in the human peptidylarginine deiminase type VI. , 2012, Journal of structural biology.

[13]  R. Huber,et al.  Crystal structure of gingipain R: an Arg‐specific bacterial cysteine proteinase with a caspase‐like fold , 1999, The EMBO journal.

[14]  E. Vossenaar,et al.  PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[15]  J. Enghild,et al.  Peptidyl Arginine Deiminase from Porphyromonas gingivalis Abolishes Anaphylatoxin C5a Activity* , 2014, The Journal of Biological Chemistry.

[16]  Clemens Vonrhein,et al.  Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER , 2012, Acta crystallographica. Section D, Biological crystallography.

[17]  György Nagy,et al.  Citrullination under physiological and pathological conditions. , 2012, Joint, bone, spine : revue du rhumatisme.

[18]  Toshiyuki Shimizu,et al.  Structural basis for Ca2+-induced activation of human PAD4 , 2004, Nature Structural &Molecular Biology.

[19]  Manfred S. Weiss,et al.  Global indicators of X-ray data quality , 2001 .

[20]  M. Pepys,et al.  Anti-keratin antibodies in rheumatoid arthritis: frequency and correlation with other features of the disease. , 1983, Clinical and experimental immunology.

[21]  M. Karsdal,et al.  Biological relevance of citrullinations: diagnostic, prognostic and therapeutic options , 2015, Autoimmunity.

[22]  J. Potempa,et al.  Porphyromonas gingivalis Virulence Factor Gingipain RgpB Shows a Unique Zymogenic Mechanism for Cysteine Peptidases* , 2013, The Journal of Biological Chemistry.

[23]  J. Potempa,et al.  Three-dimensional Structure of MecI , 2003, Journal of Biological Chemistry.

[24]  J. Potempa,et al.  Purification, Characterization, and Sequence Analysis of a Potential Virulence Factor from Porphyromonas gingivalis, Peptidylarginine Deiminase , 1999, Infection and Immunity.

[25]  A. Casiano-Colón,et al.  Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance , 1988, Applied and environmental microbiology.

[26]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[27]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[28]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[29]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[30]  Thomas Dietrich,et al.  Periodontitis in systemic rheumatic diseases , 2009, Nature Reviews Rheumatology.

[31]  G. Seymour,et al.  Relationship between periodontal infections and systemic disease. , 2007, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[32]  J. Potempa,et al.  Gingipains, the major cysteine proteinases and virulence factors of Porphyromonas gingivalis: structure, function and assembly of multidomain protein complexes. , 2003, Current protein & peptide science.

[33]  A S Rigby,et al.  Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. , 2000, Arthritis and rheumatism.

[34]  Jack Snoeyink,et al.  Nucleic Acids Research Advance Access published April 22, 2007 MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007 .

[35]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[36]  Roy Taylor,et al.  Periodontitis and diabetes: a two-way relationship , 2011, Diabetologia.

[37]  W. Craigen,et al.  Mitochondria: role of citrulline and arginine supplementation in MELAS syndrome. , 2014, The international journal of biochemistry & cell biology.

[38]  G. Sheldrick,et al.  Crystallographic ab initio protein structure solution below atomic resolution , 2009, Nature Methods.

[39]  Claudia Millán,et al.  Structure solution with ARCIMBOLDO using fragments derived from distant homology models , 2014, The FEBS journal.

[40]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[41]  M. Rahmatullah,et al.  Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. , 1980, Analytical biochemistry.

[42]  W. Vanvenrooij,et al.  Autoantibodies to citrullinated proteins in rheumatoid arthritis: clinical performance and biochemical aspects of an RA-specific marker. , 2004, Clinica chimica acta; international journal of clinical chemistry.

[43]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[44]  Theodoros Goulas,et al.  Combining phase information in reciprocal space for molecular replacement with partial models. , 2015, Acta crystallographica. Section D, Biological crystallography.

[45]  M. Gross,et al.  Protein Arginine Deiminase 2 Binds Calcium in an Ordered Fashion: Implications for Inhibitor Design , 2015, ACS chemical biology.

[46]  M. Naito,et al.  Identification of Porphyromonas gingivalis proteins secreted by the Por secretion system. , 2013, FEMS microbiology letters.

[47]  R. Marquis,et al.  Arginine deiminase system and acid adaptation of oral streptococci , 1995, Applied and environmental microbiology.

[48]  Claude Ruget,et al.  Developments in optics and performance at BL13-XALOC, the macromolecular crystallography beamline at the Alba Synchrotron , 2014, Journal of synchrotron radiation.

[49]  A. D. Clark,et al.  Crystal structures of arginine deiminase with covalent reaction intermediates; implications for catalytic mechanism. , 2004, Structure.

[50]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[51]  B. Kobe,et al.  Structure-Informed Design of an Enzymatically Inactive Vaccine Component for Group A Streptococcus , 2013, mBio.

[52]  J. Chiu,et al.  Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. , 2004, Nucleic acids research.

[53]  Claudia Millán,et al.  Macromolecular ab initio phasing enforcing secondary and tertiary structure , 2014, IUCrJ.

[54]  J. Huntington,et al.  Structure and Mechanism of Cysteine Peptidase Gingipain K (Kgp), a Major Virulence Factor of Porphyromonas gingivalis in Periodontitis* , 2014, The Journal of Biological Chemistry.

[55]  András Falus,et al.  Citrullination: a posttranslational modification in health and disease. , 2006, The international journal of biochemistry & cell biology.

[56]  L. Lebioda,et al.  Characterization and inactivation of an agmatine deiminase from Helicobacter pylori. , 2010, Bioorganic chemistry.

[57]  K. Mizuguchi,et al.  The guanidino‐group modifying enzymes: Structural basis for their diversity and commonality , 2006, Proteins.

[58]  M. Radic,et al.  Citrullinated Autoantigens: From Diagnostic Markers to Pathogenetic Mechanisms , 2015, Clinical Reviews in Allergy & Immunology.