Hydrated Iron Phosphates FePO4 ⋅ n H 2 O and Fe4 ( P 2 O 7 ) 3 ⋅ n H 2 O as 3 V Positive Electrodes in Rechargeable Lithium Batteries

Hydrated Fe III phosphates were investigated as positive electrode materials in lithium batteries. Reversible lithium insertion into amorphous and crystalline FePO 4 .nH 2 O and Fe 4 (P 2 O 7 ) 3 .nH 2 O compositions was found at potentials between 3.5 and 2.5 V vs. Li + /Li. The roles of (i) specific surface area, (ii) amorphous vs. crystalline state, (iii) H 2 O content, and (iv) electronic contact between particles in the composite positive electrode, on the electrochemical performances of these materials are discussed. Very stable cycling was obtained for optimized FePO 4 .1.6H 2 O and Fe 4 (P 2 O 7 ) 3 .4H 2 O electrodes at an average voltage of 3.0 and 3.2 V vs. Li + /Li, respectively.

[1]  John O. Thomas,et al.  Thermal stability of LiFePO4-based cathodes , 1999 .

[2]  K. S. Nanjundaswamy,et al.  Thallium solubility range in Tl2 –yBa2Can– 1CunO2n+ 4 –xsuperconductors , 1994 .

[3]  J. Pereira‐Ramos,et al.  A new MnO2 tunnel related phase as host lattice for Li intercalation , 1995 .

[4]  John B. Goodenough,et al.  Lithium insertion into Fe2(SO4)3 frameworks , 1989 .

[5]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[6]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[7]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .

[8]  M. S. Dresselhaus,et al.  Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes , 2001 .

[9]  John B. Goodenough,et al.  New cathode materials for rechargeable lithium batteries : The 3-D framework structures Li3Fe2(XO4)3 (X= P, As) , 1998 .

[10]  J. Tarascon,et al.  Low temperature synthesis and electrochemical performance of crystallized FeVO4·1.1H2O , 2000 .

[11]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[12]  G. Ladwig,et al.  Doppeloktaeder‐Cluster [V2O9] in der Kristallstruktur von Vanadium(III)‐diphosphat, V4(P2O7)3 , 1985 .

[13]  B. Scrosati,et al.  A High-Rate, Long-Life, Lithium Nanocomposite Polymer Electrolyte Battery , 2001 .

[14]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[15]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[16]  T. L. Mercier,et al.  Positive electrode materials for lithium batteries based on VOPO4 , 2001 .

[17]  M. Morcrette,et al.  On the way to the optimization of Li3Fe2(PO4)3 positive electrode materials , 2002 .

[18]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .