Characterization of different blue cheeses using a custom-design multispectral imager

The present study was conducted to determine whether multispectral imagery combined with chemometrics could accurately distinguish and classify different blue cheeses. The images of the pre-packed PDO Bleu d’Auvergne (n = 12) and Fourme d’Ambert (n = 23) blue cheeses were acquired using a custom-design multispectral imager. The image acquisition was conducted in the ultraviolet (360 nm, 370 nm and 400 nm), visible (470 nm, 568 nm and 625 nm) and near-infrared (875 nm and 950 nm) spectral regions. The spectral functions of image texture based on the Fourier spectrum and image weights were extracted from the raw multivariate images using an image processing tool and a method of simultaneous decomposition of covariance matrices, respectively. Principal component analysis (PCA) and partial least squares discriminant analysis (PLSDA) of the spectrum functions showed a reliable discrimination of the Bleu d’Auvergne and Fourme d’Ambert blue cheeses. Examination of the image weights using PLSDA allowed the prediction of the producers of the blue cheeses. Our data demonstrated the ability of the multispectral imagery combined with chemometrics to characterize the quality and identity of the blue cheeses in a rapid and inexpensive manner.AbstractBleu d’Auvergne (n = 12) Fourme d’Ambert (n = 23) (360 nm 370 nm 400 nm), (470 nm 568 nm 625 nm) (875 nm 950 nm) (PCA) (PLSDA) Bleu d’Auvergne Fourme d’Ambert PLSDARésuméCette étude avait pour objectif de déterminer le potentiel de l’imagerie multi-spectrale couplée à la chimiométrie, à discriminer et à classer correctement des fromages à pâte persillée. Les images de portions de fromages AOC Bleu d’Auvergne (n = 12) et Fourme d’Ambert (n = 23) pré-emballés ont été enregistrées au moyen d’un banc d’imagerie multi-spectrale développé par nos laboratoires. Les images ont été acquises sur une plage spectrale incluant l’ultraviolet (360, 370 et 400 nm), le visible (470, 568 et 625 nm) et le proche infrarouge (875 et 950 nm). Les fonctions spectrales issues de transformées de Fourier et caractérisant la texture de l’image et les poids des images ont été extraites des images multi-spectrales au moyen, respectivement, d’un algorithme d’analyse d’image et d’une méthode de décomposition simultanée des matrices de covariances. L’analyse en composantes principales (ACP) et l’analyse discriminante par partial least squares (AD-PLS) des fonctions spectrales mettent en évidence une bonne discrimination des fromages Bleu d’Auvergne des Fourme d’Ambert. L’analyse de la matrice de données sur les poids des images par AD-PLS permet de prédire le producteur des fromages. Nos résultats montrent le potentiel de l’imagerie multi-spectrale couplée à la chimiométrie pour caractériser la qualité et l’identité de fromages à pâte persillée de manière rapide et peu coûteuse.

[1]  D. Levieux,et al.  Front-face fluorescence spectroscopy allows the characterization of mild heat treatments applied to milk. Relations with the denaturation of milk proteins. , 2005, Journal of agricultural and food chemistry.

[2]  Marie-Françoise Devaux,et al.  Infrared and fluorescence spectroscopy for monitoring protein structure and interaction changes during cheese ripening , 2001 .

[3]  H. Heymann,et al.  Image texture features as indicators of beef tenderness. , 1999, Meat science.

[4]  R Tsenkova,et al.  Near infrared spectroscopy for biomonitoring: cow milk composition measurement in a spectral region from 1,100 to 2,400 nanometers. , 2000, Journal of animal science.

[5]  Mohsen Kompany-Zareh,et al.  Application of radial basis function networks and successive projections algorithm in a QSAR study of anti‐HIV activity for a large group of HEPT derivatives , 2006 .

[6]  E. Qannari,et al.  Investigation at the molecular level of soft cheese quality and ripening by infrared and fluorescence spectroscopies and chemometrics—relationships with rheology properties , 2005 .

[7]  Philippe Courcoux,et al.  Simultaneous decomposition of multivariate images using three-way data analysis: Application to the comparison of cereal grains by confocal laser scanning microscopy , 2002 .

[8]  T Fearn,et al.  Near-infrared spectroscopy for dairy management: measurement of unhomogenized milk composition. , 1999, Journal of dairy science.

[9]  Michael Ngadi,et al.  Pork Quality Classification Using a Hyperspectral Imaging System and Neural Network , 2007 .

[10]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[11]  A. Riaublanc,et al.  Potentiality of spectroscopic methods for the characterisation of dairy products. II. Mid infrared study of the melting temperature of cream triacylglycerols and of the solid fat content in cream , 1997 .

[12]  T Mitsuhashi,et al.  Computer image analysis for prediction of carcass composition from cross-sections of Japanese Black steers. , 2001, Journal of animal science.

[13]  Eric Dufour,et al.  Monitoring the geographic origin of both experimental French Jura hard cheeses and Swiss Gruyère and l'Etivaz PDO cheeses using mid-infrared and fluorescence spectroscopies: a preliminary investigation , 2005 .

[14]  M. Devaux,et al.  Monitoring the identity and the structure of soft cheeses by fluorescence spectroscopy , 2000 .

[15]  S. Shackelford,et al.  Coupling of image analysis and tenderness classification to simultaneously evaluate carcass cutability, longissimus area, subprimal cut weights, and tenderness of beef. , 1998, Journal of animal science.

[16]  A. Riaublanc,et al.  Potentiality of spectroscopic methods for the characterisation of dairy products. I. Front-face fluorescence study of raw, heated and homogenised milks , 1997 .

[17]  A. Kulmyrzaev,et al.  Infrared and Fluorescence Spectroscopic Techniques for the Determination of Nutritional Constituents in Foods , 2007 .

[18]  D. Bertrand,et al.  Application of PLS‐DA in multivariate image analysis , 2006 .

[19]  R. Karoui,et al.  Potentiality of front-face fluorescence spectroscopy to determine the geographic origin of milks from the Haute-Loire department (France) , 2005 .