The Fluorescent Pigment of Pseudomonas fluorescens : Biosynthesis, Purification and Physicochemical Properties

The biosynthesis of a yellow-green, fluorescent, water-soluble pigment by Pseudomonas fluorescens occurred only when the bacteria were iron-deficient and was not directly influenced by the nature of the organic carbon source. The pigment formed a very stable Fe3+ complex and was purified in this form. Pseudomonas fluorescens produced only one molecular species of fluorescent pigment; however, its lability under mild alkaline conditions led to the formation of several pigmented decomposition products. The spectral properties of the pure pigment, its molecular weight (1500 ± 75) and its stability constant for Fe3+ (of the order of 1032) were determined. Both its biosynthesis and its chemical properties (formation of a stable Fe3+ complex) suggest that the fluorescent pigment is a desferrisiderophore.

[1]  J. M. Meyer,et al.  Role of PyoverdinePf, the Iron-binding Fluorescent Pigment of Pseudomonas fluorescens, in Iron Transport , 1978 .

[2]  R. E. Buchanan,et al.  Bergey's Manual of Determinative Bacteriology. , 1975 .

[3]  M. Doudoroff,et al.  Nucleic Acid Homologies in the Genus Pseudomonas , 1973 .

[4]  S. Palumbo Role of Iron and Sulfur in Pigment and Slime Formation by Pseudomonas aeruginosa , 1972, Journal of bacteriology.

[5]  F. Hulcher Activation of 6-phosphogluconate dehydrase by pyoverdine. , 1968, Biochemical and biophysical research communications.

[6]  M. Doudoroff,et al.  The aerobic pseudomonads: a taxonomic study. , 1966, Journal of general microbiology.

[7]  T. Theodore,et al.  GROWTH OF STAPHYLOCOCCUS AUREUS IN MEDIA OF RESTRICTED AND UNRESTRICTED INORGANIC IRON AVAILABILITY. , 1965, Journal of general microbiology.

[8]  A. Chakrabarty,et al.  Effect of trace elements on the production of pigments by a pseudomonad. , 1964, The Biochemical journal.

[9]  A. Chakrabarty,et al.  Characterization of a pigment from a pseudomonad. , 1964, The Biochemical journal.

[10]  F. Hulcher,et al.  GREEN FLUORESCENT PIGMENT ACCUMULATED BY A MUTANT OF CELLVIBRIO GILVUS , 1964, Journal of bacteriology.

[11]  H. Lenhoff An Inverse Relationship of the Effects of Oxygen and Iron on the Production of Fluorescin and Cytochrome c by Pseudomonas fluorescens , 1963, Nature.

[12]  G. Anderegg,et al.  Hydroxamatkomplexe III. Eisen(III)‐Austausch zwischen Sideraminen und Komplexonen. Diskussion der Bildungskonstanten der Hydroxamatkomplexe , 1963 .

[13]  S. Gouda,et al.  Glyoxylate et succinate, facteurs déterminant respectivement l’hypochromie et l’hyperchromie des cultures de Pseudomonas fluorescens , 1963 .

[14]  G. Schwarzenbach The Determination of Stability Constants , 1962 .

[15]  F. Seel Analyse Qualitative Rapide des Cations et des Anions. , 1962 .

[16]  F. Burriel-Marti Analyse Qualitative Rapide des Cations et des Anions: G. Charlot, 3è édition. Dunod, Paris, 1961, pp. 96. Broché 9.50 NF. , 1962 .

[17]  S. Gouda,et al.  [Contribution to the study of the pigment of Pseudomonas fluorescens Mig]. , 1961, Pathologia et microbiologia.

[18]  J. Totter,et al.  INFLUENCE OF THE CONCENTRATION OF IRON ON THE PRODUCTION OF FLUORESCIN BY PSEUDOMONAS AERUGINOSA , 1953, Journal of bacteriology.

[19]  Koepsell Hj Gluconate oxidation by Pseudomonas fluorescens. , 1950 .

[20]  B. A. Eagles,et al.  THE MINERAL REQUIREMENTS FOR FLUORESCIN PRODUCTION , 1948 .

[21]  F. Georgia,et al.  Study of Bacterial Fluorescence in Various Media , 1931, Journal of bacteriology.

[22]  Sullivan Mx Synthetic Culture Media and the Biochemistry of bacterial Pigments. , 1905 .

[23]  M. Sullivan Synthetic Culture Media and the Biochemistry of bacterial Pigments. , 2022, The Journal of medical research.