Bayesian calibration of a k-e turbulence model for predictive jet-in-crossflow simulations.

‡§ We propose a Bayesian method to calibrate parameters of a RANS model to improve its predictive skill in jet-in-crossflow simulations. The method is based on the hypotheses that (1) informative parameters can be estimated from experiments of flow configurations that display the same, strongly vortical features of jet-in-crossflow interactions and (2) one can construct surrogates of RANS models for certain judiciously chosen RANS outputs which serve as calibration variables (alternatively, experimental observables). We estimate three ke parameters (C∝, C 2 , C 1 ) from Reynolds stress measurements from an incompressible flowover-a-square-cylinder experiment. The k-e parameters are estimated as a joint probability density function. Jet-in-crossflow simulations performed with (C∝, C 2 , C 1 ) samples drawn from this distribution are seen to provide far better predictions than those obtained with nominal parameter values. We also find a (C∝, C 2 , C 1 ) combination which provides < 15% error in a number of performance metrics; in contrast, the errors obtained with nominal parameter values may exceed 60%.

[1]  Sanford Dash,et al.  DDES of Aeropropulsive Flows Based on an Extended k-? RANS Model , 2013 .

[2]  Gianluca Iaccarino,et al.  A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations , 2013 .

[3]  B. L. Neindre Contribution a l'etude experimentale de la conductivite thermique de quelques fluides a haute temperature et a haute pression , 1972 .

[4]  Jeffrey L. Payne,et al.  EXPERIMENTS AND COMPUTATIONS OF ROLL TORQUE INDUCED BY VORTEX-FIN INTERACTION , 2004 .

[5]  James T. Heineck,et al.  Planar velocimetry of jet/fin interaction on a full-scale flight vehicle configuration , 2007 .

[6]  S. Arunajatesan,et al.  Tuning a RANS k-e model for jet-in-crossflow simulations. , 2013 .

[7]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[8]  Shmuel Einav,et al.  A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder , 1995, Journal of Fluid Mechanics.

[9]  Takashi Hosoda,et al.  A non-linear κ-ε model with realizability for prediction of flows around bluff bodies , 2003 .

[10]  P. Sagaut,et al.  Building Efficient Response Surfaces of Aerodynamic Functions with Kriging and Cokriging , 2008 .

[11]  Todd A. Oliver,et al.  Bayesian uncertainty quantification applied to RANS turbulence models , 2011 .

[12]  S. Menon,et al.  Dynamics of sonic jet injection into supersonic crossflow , 2010 .

[13]  James T. Heineck,et al.  Stereoscopic PIV for Jet/Fin interaction measurements on a full-scale flight vehicle configuration. , 2005 .

[14]  Wolfgang Rodi,et al.  The flapping shear layer formed by flow separation from the forward corner of a square cylinder , 1994, Journal of Fluid Mechanics.

[15]  Pierre Sagaut,et al.  Sensitivity Analysis and Multiobjective Optimization for LES Numerical Parameters , 2008 .

[16]  W. Jones,et al.  The prediction of laminarization with a two-equation model of turbulence , 1972 .

[17]  S. Girimaji Pressure–strain correlation modelling of complex turbulent flows , 2000, Journal of Fluid Mechanics.

[18]  Gianluca Iaccarino,et al.  Simulating separated flows using the k-ε model By , 2002 .

[19]  T. Goossens,et al.  3D coherent vortices in the turbulent near wake of a square cylinder , 2008 .

[20]  J. R. Ristorcelli,et al.  A rapid-pressure covariance representation consistent with the Taylor—Proudman theorem materially frame indifferent in the two-dimensional limit , 1995, Journal of Fluid Mechanics.

[21]  John F. Henfling,et al.  Crossplane Velocimetry of a Transverse Supersonic Jet in a Transonic Crossflow , 2006 .

[22]  William H. Calhoon,et al.  Scalar Fluctuation Modeling for High-Speed Aeropropulsive Flows , 2007 .

[23]  Hester Bijl,et al.  Bayesian estimates of parameter variability in the k-ε turbulence model , 2014, J. Comput. Phys..

[24]  D. Wilcox Turbulence modeling for CFD , 1993 .

[25]  K. Mahesh,et al.  Simulations of High Speed Turbulent Jets in Crossflow , 2010 .

[26]  R. So,et al.  A Dissipation Rate Equation for Low-Reynolds-Number and Near-Wall Turbulence , 1997 .

[27]  S. Arunajatesan,et al.  Evaluation of Two-Equations RANS Models for Simulation of Jet-in-Crossflow Problems. , 2012 .

[28]  Heinz Pitsch,et al.  Reynolds-Averaged Navier-Stokes Simulations of the HyShot II Scramjet , 2012 .

[29]  Qiqi Wang,et al.  Quantification of structural uncertainties in the k − ω turbulence model , 2010 .

[30]  John F. Henfling,et al.  Penetration of a Transverse Supersonic Jet into a Subsonic Compressible Crossflow , 2004 .

[31]  John L. Lumley,et al.  Computational Modeling of Turbulent Flows , 1978 .

[32]  Sai Hung Cheung,et al.  Bayesian uncertainty analysis with applications to turbulence modeling , 2011, Reliab. Eng. Syst. Saf..

[33]  P. Durbin Near-wall turbulence closure modeling without “damping functions” , 1991, Theoretical and Computational Fluid Dynamics.

[34]  Gianluca Iaccarino,et al.  Modeling Structural Uncertainties in Reynolds-Averaged Computations of Shock/Boundary Layer Interactions , 2011 .

[35]  T. Shih,et al.  A new k-ϵ eddy viscosity model for high reynolds number turbulent flows , 1995 .

[36]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[37]  Xiaochuan Chai,et al.  Numerical simulations of high speed turbulent jets in crossflow. , 2011 .

[38]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986, Physical review letters.

[39]  Karline Soetaert,et al.  Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME , 2010 .

[40]  P. Durbin SEPARATED FLOW COMPUTATIONS WITH THE K-E-V2 MODEL , 1995 .

[41]  S. K. Lele,et al.  Dynamics and mixing of a sonic jet in a supersonic turbulent crossflow , 2009 .