A review of indentation fracture theory: its development, principles and limitations

The influence of ‘blunt’ and ‘sharp’ indenters in producing indentation crack patterns is outlined. Attention is then focused on the initiation and propagation of cracks formed during a sharp contact event as such contacts are of the most practical interest and are commonly used to determine the fracture toughness of opaque materials. The modifying influence on the behaviour of such cracks as a result of anisotropy, particle size, environment and residual stress effects is briefly discussed. A simplistic derivation of the current formula used in determining the fracture toughness of suitable materials from a sharp contact event is then given. The criteria for valid results are also presented and these, in conjunction with other points discussed, highlight some of the limitations of this method of toughness testing.RésuméOn souligne l'influence de l'émoussage ou de l'acuité d'un poinçon lors de la production de fissures d'indentation. On se concentre ensuite sur l'amorçage et la propagation de fissure résultant du contact avec un poinçon à angle acéré, cas le plus intéressant dans la pratique, et d'usage courant pour déterminer la ténacité à la rupture de matériaux vitreux. On discute brièvement de l'influence que l'anisotropie, la taille des particules, l'environnement et les contraintes résiduelles peuvent avoir sur le comportement de telles fissures. On donne également une dérivée simpliste de la formule couramment utilisée pour la détermination de la ténacité à la rupture des matériaux adéquats à partir d'une essai de poinçonnage. On présente également les critères pour que les résultats soient valides, et on indique comment ces critères, en association avec d'autres points évoqués par ailleurs, mettent en lumière les limites de cette méthode.

[1]  B. Lawn,et al.  On the theory of Hertzian fracture , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  G. Kino,et al.  The nature of machining damage in brittle materials , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  J. Petrovic,et al.  Slow Crack Growth from Controlled Surface Flaws in Hot-Pressed Si3N4 , 1978 .

[4]  R. Cook,et al.  Effect of Machining Damage on the Strength of a Glass‐Ceramic , 1981 .

[5]  B. Lawn,et al.  Section‐and‐Etch Study of Hertzian Fracture Mechanics , 1971 .

[6]  P. Gupta,et al.  Post‐Indentation Slow Growth of Radial Cracks in Glasses , 1981 .

[7]  Brian R. Lawn,et al.  A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I , 1981 .

[8]  B. Lawn,et al.  Indentation fracture: principles and applications , 1975 .

[9]  D. M. Marsh,et al.  Plastic flow in glass , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  D. Marshall Controlled Flaws in Ceramics: A Comparison of Knoop and Vickers Indentation , 1983 .

[11]  B. Lawn,et al.  Residual stress effects in sharp contact cracking , 1979 .

[12]  A. Evans,et al.  Fracture Toughness: The Role of Indentation Techniques , 1979 .

[13]  Shu-Sheng Chiang,et al.  THE RESPONSE OF SOLIDS TO ELASTIC/ PLASTIC INDENTATION , 1980 .

[14]  John E. Field,et al.  Studies of contact damage in polycrystalline zinc sulphide , 1980 .

[15]  J. Petrovic Effect of Indenter Geometry on Controlled‐Surface‐Flaw Fracture Toughness , 1983 .

[16]  J. Suiter,et al.  On the indentation fracture of cemented carbide part 1 — Survey of operative fracture modes , 1977 .

[17]  M. Swain,et al.  The origin of median and lateral cracks around plastic indents in brittle materials , 1978 .

[18]  S. Zwaag,et al.  Plastic processes in a range of soda-lime-silica glasses , 1984 .

[19]  David L. Davidson,et al.  The crack-initiation threshold in ceramic materials subject to elastic/plastic indentation , 1979 .

[20]  K. Johnson,et al.  The correlation of indentation experiments , 1970 .

[21]  B. Lawn HERTZIAN FRACTURE IN SINGLE CRYSTALS WITH THE DIAMOND STRUCTURE , 1967 .

[22]  T. R. Wilshaw,et al.  Quasi-static solid particle damage in brittle solids—I. Observations analysis and implications , 1976 .

[23]  Crack evolution in Vickers indentation for soda-lime-silica glass , 1982 .

[24]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[25]  J. T. Hagan,et al.  Cone cracks around Vickers indentations in fused silica glass , 1979 .

[26]  Michael V. Swain,et al.  Microfracture beneath point indentations in brittle solids , 1975 .

[27]  I. Wright,et al.  On estimating fracture toughness of cemented carbides from Palmqvist crack sizes , 1986 .

[28]  J. Lankford Threshold microfracture during elastic-plastic indentation of ceramics , 1980 .

[29]  K. W. Peter,et al.  Densification and flow phenomena of glass in indentation experiments , 1970 .

[30]  B. R. Law,et al.  Residual Stress Effects in Failure from Flaws , 1979 .

[31]  B. Lawn,et al.  Mechanics of strength-degrading contact flaws in silicon , 1981 .

[32]  A. Evans,et al.  A model for crack initiation in elastic/plastic indentation fields , 1977 .

[33]  The Response of Solids to Elastic/Plastic Indentation. II. Fracture Initiation , 1982 .

[34]  M. M. Chaudhri,et al.  Single particle impact damage of fused silica , 1980 .

[35]  Crack Nucleation About Pointed Indentations in Glasses , 1979 .

[36]  W. Hirst,et al.  The indentation of materials by wedges , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  A. Evans,et al.  Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System , 1980 .

[38]  B. Lawn,et al.  Contact‐Induced Failure of Prestressed Glass Plates , 1979 .

[39]  E. Fuller,et al.  Equilibrium penny-like cracks in indentation fracture , 1975 .

[40]  B. Lawn,et al.  Kinetics of shear-activated indentation crack initiation in soda-lime glass , 1983 .

[41]  B. Lawn,et al.  A comparative study of the fracture of various silica modifications using the Hertzian test , 1973 .

[42]  B. Lawn,et al.  On the mode of chipping fracture in brittle solids , 1975 .

[43]  J. J. O'Connor,et al.  The effect of the indenter elasticity on the Hertzian fracture of brittle materials , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[44]  B. Lawn,et al.  Electron microscopy of microcracking about indentations in aluminium oxide and silicon carbide , 1975 .

[45]  J. T. Hagan,et al.  Micromechanics of crack nucleation during indentations , 1979 .

[46]  J. Lankford,et al.  Indentation plasticity and microfracture in silicon carbide , 1979 .

[47]  C. M. Perrott,et al.  Elastic-plastic indentation: Hardness and fracture , 1977 .

[48]  B. Hockey Plastic Deformation of Aluminum Oxide by Indentation and Abrasion , 1971 .

[49]  Brian R. Lawn,et al.  Strength Degradation of Glass Resulting from Impact with Spheres , 1977 .

[50]  James Lankford,et al.  Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method , 1982 .

[51]  E. Fuller,et al.  Strength Degradation of Brittle Surfaces: Sharp Indenters , 1975 .

[52]  Brian R. Lawn,et al.  Residual stress effects in sharp contact cracking , 1979 .

[53]  Albert S. Kobayashi,et al.  Fracture Mechanics Applied to Brittle Materials , 1979 .

[54]  J. Hagan Shear deformation under pyramidal indentations in soda-lime glass , 1980 .

[55]  R. Hill The mathematical theory of plasticity , 1950 .

[56]  T. R. Wilshaw,et al.  A computer simulation study of Hertzian cone crack growth , 1974 .

[57]  R. Cook,et al.  A Modified Indentation Toughness Technique , 1983 .