Some variants of perfect graphs related to the matching number, the vertex cover and the weakly connected domination number

Abstract Given two types of graph theoretical parameters ρ and σ , we say that a graph G is ( σ , ρ ) -perfect if σ ( H ) = ρ ( H ) for every non-trivial connected induced subgraph H of G . In this work we characterize ( γ w , τ ) -perfect graphs, ( γ w , α ′ )-perfect graphs, and ( α ′ , τ )-perfect graphs, where γ w ( G ) , τ ( G ) and α ′ ( G ) denote the weakly connected domination number, the vertex cover number and the matching number of G , respectively. Moreover, we give conditions on a graph to have equalities between these three parameters.

[1]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[2]  Mitre Costa Dourado,et al.  Forbidden subgraphs and the König-Egerváry property , 2013, Discret. Appl. Math..

[3]  Rajmohan Rajaraman,et al.  Topology control and routing in ad hoc networks: a survey , 2002, SIGA.

[4]  Johannes H. Hattingh,et al.  On weakly connected domination in graphs , 1997, Discret. Math..

[5]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[6]  E. Korach,et al.  Subgraph characterization of red/blue-split graph and konig egerváry graphs , 2006, SODA 2006.

[7]  László Lovász,et al.  Ear-decompositions of matching-covered graphs , 1983, Comb..

[8]  Jie Wu,et al.  An extended localized algorithm for connected dominating set formation in ad hoc wireless networks , 2004, IEEE Transactions on Parallel and Distributed Systems.

[9]  Weijia Jia,et al.  Clustering wireless ad hoc networks with weakly connected dominating set , 2007, J. Parallel Distributed Comput..

[10]  Arthur L. Liestman,et al.  Approximating minimum size weakly-connected dominating sets for clustering mobile ad hoc networks , 2002, MobiHoc '02.

[11]  Romeo Rizzi A short proof of K?nig's matching theorem , 2000 .

[12]  Jie Wu,et al.  Extended Dominating-Set-Based Routing in Ad Hoc Wireless Networks with Unidirectional Links , 2002, IEEE Trans. Parallel Distributed Syst..

[13]  Flavia Bonomo-Braberman,et al.  On some graph classes related to perfect graphs: A survey , 2020, Discret. Appl. Math..

[14]  Robert W. Deming,et al.  Independence numbers of graphs-an extension of the Koenig-Egervary theorem , 1979, Discret. Math..

[15]  Juan A. Rodríguez-Velázquez,et al.  Similarities and Differences Between the Vertex Cover Number and the Weakly Connected Domination Number of a Graph , 2017, Fundam. Informaticae.

[16]  Domingos M. Cardoso,et al.  Combinatorial and spectral properties of König-Egerváry graphs , 2017, Discret. Appl. Math..

[17]  R. Rizzi A short proof of König's matching theorem , 2000 .

[18]  William R. Pulleyblank,et al.  König-Egerváry graphs, 2-bicritical graphs and fractional matchings , 1989, Discret. Appl. Math..

[19]  Peter Mark Kayll König-Egerváry Graphs are Non-Edmonds , 2010, Graphs Comb..

[20]  Johannes H. Hattingh,et al.  Bounds relating the weakly connected domination number to the total domination number and the matching number , 2009, Discret. Appl. Math..

[21]  Shariefuddin Pirzada,et al.  Applications of graph theory , 2007 .

[22]  V. Chvátal,et al.  Topics on perfect graphs , 1984 .