BankXX: Supporting legal arguments through heuristic retrieval

The BankXX system models the process of perusing and gathering information for argument as a heuristic best-first search for relevant cases, theories, and other domain-specific information. As BankXX searches its heterogeneous and highly interconnected network of domain knowledge, information is incrementally analyzed and amalgamated into a dozen desirable ingredients for argument (called argument pieces), such as citations to cases, applications of legal theories, and references to prototypical factual scenarios. At the conclusion of the search, BankXX outputs the set of argument pieces filled with harvested material relevant to the input problem situation.This research explores the appropriateness of the search paradigm as a framework for harvesting and mining information needed to make legal arguments. In this article, we describe how legal research fits the heuristic search framework and detail how this model is used in BankXX. We describe the BankXX program with emphasis on its representation of legal knowledge and legal argument. We describe the heuristic search mechanism and evaluation functions that drive the program. We give an extended example of the processing of BankXX on the facts of an actual legal case in BankXX's application domain — the good faith question of Chapter 13 personal bankruptcy law. We discuss closely related research on legal knowledge representation and retrieval and the use of search for case retrieval or tasks related to argument creation. Finally we review what we believe are the contributions of this research to the understanding of the diverse disciplines it addresses.

[1]  Stanley E. Tobin,et al.  A Uniform System of Citation , 1959 .

[2]  J. Bing,et al.  Designing text retrieval systems for conceptual searching , 1987, ICAIL '87.

[3]  Judith P. Dick,et al.  Conceptual retrieval and case law , 1987, ICAIL '87.

[4]  Edwina L. Rissland,et al.  Case-Based Diagnostic Analysis in a Blackboard Architecture , 1993, AAAI.

[5]  E. Rosch,et al.  Family resemblances: Studies in the internal structure of categories , 1975, Cognitive Psychology.

[6]  S. Toulmin The uses of argument , 1960 .

[7]  Edwina L. Rissland,et al.  CABARET: Rule Interpretation in a Hybrid Architecture , 1991, Int. J. Man Mach. Stud..

[8]  Wendy G. Lehnert,et al.  Plot Units and Narrative Summarization , 1981, Cogn. Sci..

[9]  Ray Bareiss,et al.  Concept Learning and Heuristic Classification in WeakTtheory Domains , 1990, Artif. Intell..

[10]  Laveen N. Kanal,et al.  A formalism for automated generation of preferred arguments , 1991 .

[11]  Sergio J. Alvarado Understanding Editorial Text: A Computer Model of Argument Comprehension , 1990 .

[12]  STEVEN MINTON,et al.  A reply to Zito-Wolf's book review ofLearning search control knowledge: An explanation-based approach , 2004, Machine Learning.

[13]  G. Lakoff,et al.  Women, Fire, and Dangerous Things: What Categories Reveal about the Mind , 1988 .

[14]  Gerald Salton,et al.  Automatic text processing , 1988 .

[15]  Christina L. Kunz The Process of Legal Research , 1995 .

[16]  Edwina L. Rissland,et al.  Case Retrieval through Multiple Indexing and Heuristic Search , 1993, IJCAI.

[17]  Ch. Perelman,et al.  The New Rhetoric: A Treatise on Argumentation , 1971 .

[18]  Kevin D. Ashley Modeling legal argument - reasoning with cases and hypotheticals , 1991, Artificial intelligence and legal reasoning.

[19]  E. Voorhees The Effectiveness & Efficiency of Agglomerative Hierarchic Clustering in Document Retrieval , 1985 .

[20]  Kevin D. Ashley,et al.  Ashley,K. D.-But, see, accord: generating blue book citations in HYPO , 1987, ICAIL '87.

[21]  Jaime G. Carbonell,et al.  Learning effective search control knowledge: an explanation-based approach , 1988 .

[22]  Janet L. Kolodner,et al.  Maintaining Organization in a Dynamic Long-Term Memory , 1983, Cogn. Sci..

[23]  Daniel E. Rose A Symbolic and Connectionist Approach To Legal Information Retrieval , 1994 .

[24]  Edwina L. Rissland,et al.  BankXX: a program to generate argument through case-base research , 1993, ICAIL '93.

[25]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[26]  Carole D. Hafner An information retrieval system based on a computer model of legal knowledge , 1981 .

[27]  Edward Hirsch Levi,et al.  An Introduction to Legal Reasoning , 1950 .

[28]  Carole D. Hafner,et al.  Incorporating procedural context into a model of case-based legal reasoning , 1991, ICAIL '91.

[29]  A. L. Samuel,et al.  Some studies in machine learning using the game of checkers. II: recent progress , 1967 .

[30]  David B. Skalak,et al.  Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithms , 1994, ICML.

[31]  W. Bruce Croft,et al.  Organizing and searching large files of document descriptions , 1978 .

[32]  Paul E. Utgoff,et al.  Two Kinds of Training Information For Evaluation Function Learning , 1991, AAAI.

[33]  J. C. Smith,et al.  Beyond boolean search: FLEXICON, a legal tex-based intelligent system , 1991, ICAIL '91.

[34]  Edwina Rissland Michener,et al.  Understanding Understanding Mathematics. Artificial Intelligence Memo No. 488. , 1978 .

[35]  Edwina L. Rissland,et al.  Arguments and cases: An inevitable intertwining , 1992, Artificial Intelligence and Law.

[36]  Katia P. Sycara,et al.  Argumentation: Planning Other Agents' Plans , 1989, IJCAI.

[37]  Nils J. Nilsson,et al.  The Mathematical Foundations of Learning Machines , 1990 .

[38]  Belur V. Dasarathy,et al.  Nearest neighbor (NN) norms: NN pattern classification techniques , 1991 .

[39]  Henry Prakken,et al.  Logical Tools for Modelling Legal Argument , 1997 .

[40]  Laveen N. Kanal,et al.  Construction of preferred causal hypotheses for reasoning with uncertain knowledge , 1989 .

[41]  Carole D. Hafner Conceptual organization of case law knowledge bases , 1987, ICAIL '87.

[42]  Daniel E. Rose,et al.  A Connectionist and Symbolic Hybrid for Improving Legal Research , 1991, Int. J. Man Mach. Stud..

[43]  K. Branting,et al.  Building Explanations from Rules and Structured Cases , 1991, Int. J. Man Mach. Stud..

[44]  Edwina L. Rissland,et al.  Evaluating a Legal Argument Program: The BankXX Experiments , 1995, Artificial Intelligence and Law.

[45]  Thomas F. Gordon,et al.  An Abductive Theory of Legal Issues , 1991, Int. J. Man Mach. Stud..

[46]  Andrew S. Merrill,et al.  A design for reasoning with policies, precedents, and rationales , 1993, ICAIL '93.

[47]  Kevin D. Ashley,et al.  Explaining and Arguing With Examples , 1984, AAAI.

[48]  R. Schank Tell Me a Story: A New Look at Real and Artificial Memory , 1991 .

[49]  Barr and Feigenbaum Edward A. Avron,et al.  The Handbook of Artificial Intelligence , 1981 .

[50]  Richard Fikes,et al.  Learning and Executing Generalized Robot Plans , 1993, Artif. Intell..

[51]  Kristian J. Hammond,et al.  Case-Based Planning: Viewing Planning as a Memory Task , 1989 .