Towards efficient search for activity trajectories

The advances in location positioning and wireless communication technologies have led to a myriad of spatial trajectories representing the mobility of a variety of moving objects. While processing trajectory data with the focus of spatio-temporal features has been widely studied in the last decade, recent proliferation in location-based web applications (e.g., Foursquare, Facebook) has given rise to large amounts of trajectories associated with activity information, called activity trajectory. In this paper, we study the problem of efficient similarity search on activity trajectory database. Given a sequence of query locations, each associated with a set of desired activities, an activity trajectory similarity query (ATSQ) returns k trajectories that cover the query activities and yield the shortest minimum match distance. An order-sensitive activity trajectory similarity query (OATSQ) is also proposed to take into account the order of the query locations. To process the queries efficiently, we firstly develop a novel hybrid grid index, GAT, to organize the trajectory segments and activities hierarchically, which enables us to prune the search space by location proximity and activity containment simultaneously. In addition, we propose algorithms for efficient computation of the minimum match distance and minimum order-sensitive match distance, respectively. The results of our extensive empirical studies based on real online check-in datasets demonstrate that our proposed index and methods are capable of achieving superior performance and good scalability.

[1]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[2]  Heng Tao Shen,et al.  Searching trajectories by locations: an efficiency study , 2010, SIGMOD Conference.

[3]  Nicholas Jing Yuan,et al.  On discovery of gathering patterns from trajectories , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[4]  Christian S. Jensen,et al.  Retrieving top-k prestige-based relevant spatial web objects , 2010, Proc. VLDB Endow..

[5]  Beng Chin Ooi,et al.  Collective spatial keyword querying , 2011, SIGMOD '11.

[6]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[7]  JUSTIN ZOBEL,et al.  Inverted files for text search engines , 2006, CSUR.

[8]  Anthony K. H. Tung,et al.  Locating mapped resources in Web 2.0 , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[9]  Jing Xu,et al.  DESKS: Direction-Aware Spatial Keyword Search , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[10]  Jignesh M. Patel,et al.  Indexing Large Trajectory Data Sets With SETI , 2003, CIDR.

[11]  Senjuti Basu Roy,et al.  Location-aware type ahead search on spatial databases: semantics and efficiency , 2011, SIGMOD '11.

[12]  Heng Tao Shen,et al.  Convoy Queries in Spatio-Temporal Databases , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[13]  Christian S. Jensen,et al.  Efficient continuously moving top-k spatial keyword query processing , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[14]  Naphtali Rishe,et al.  Keyword Search on Spatial Databases , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[15]  Chinya V. Ravishankar,et al.  Indexing Spatio-Temporal Trajectories with Efficient Polynomial Approximations , 2007, IEEE Transactions on Knowledge and Data Engineering.

[16]  Christian S. Jensen,et al.  Discovery of convoys in trajectory databases , 2008, Proc. VLDB Endow..

[17]  Raymond T. Ng,et al.  Indexing spatio-temporal trajectories with Chebyshev polynomials , 2004, SIGMOD '04.

[18]  Mohamed F. Mokbel,et al.  Location-based and preference-aware recommendation using sparse geo-social networking data , 2012, SIGSPATIAL/GIS.

[19]  Xing Xie,et al.  Hybrid index structures for location-based web search , 2005, CIKM '05.

[20]  Jiawei Han,et al.  Swarm: Mining Relaxed Temporal Moving Object Clusters , 2010, Proc. VLDB Endow..

[21]  Nikos Pelekis,et al.  Nearest Neighbor Search on Moving Object Trajectories , 2005, SSTD.

[22]  Christian S. Jensen,et al.  Efficient Retrieval of the Top-k Most Relevant Spatial Web Objects , 2009, Proc. VLDB Endow..

[23]  Lei Chen,et al.  On The Marriage of Lp-norms and Edit Distance , 2004, VLDB.

[24]  Dieter Pfoser,et al.  Novel Approaches to the Indexing of Moving Object Trajectories , 2000, VLDB.

[25]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[26]  Chen Li,et al.  Processing Spatial-Keyword (SK) Queries in Geographic Information Retrieval (GIR) Systems , 2007, 19th International Conference on Scientific and Statistical Database Management (SSDBM 2007).

[27]  Xing Xie,et al.  Reducing Uncertainty of Low-Sampling-Rate Trajectories , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[28]  Clu-istos Foutsos,et al.  Fast subsequence matching in time-series databases , 1994, SIGMOD '94.

[29]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[30]  Christos Faloutsos,et al.  Efficient Similarity Search In Sequence Databases , 1993, FODO.

[31]  Feifei Li,et al.  Approximate string search in spatial databases , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[32]  Samuel Madden,et al.  TrajStore: An adaptive storage system for very large trajectory data sets , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[33]  Anthony K. H. Tung,et al.  Keyword Search in Spatial Databases: Towards Searching by Document , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[34]  Kai Zheng,et al.  Probabilistic range queries for uncertain trajectories on road networks , 2011, EDBT/ICDT '11.

[35]  Jiaheng Lu,et al.  Reverse spatial and textual k nearest neighbor search , 2011, SIGMOD '11.

[36]  Panos Kalnis,et al.  User oriented trajectory search for trip recommendation , 2012, EDBT '12.

[37]  Christos Faloutsos,et al.  Efficient retrieval of similar time sequences under time warping , 1998, Proceedings 14th International Conference on Data Engineering.