Eicosanoid storm in infection and inflammation

[1]  S. Leppla,et al.  The Cyclopentenone Prostaglandin 15d-PGJ2 Inhibits the NLRP1 and NLRP3 Inflammasomes , 2015, The Journal of Immunology.

[2]  A. Sher,et al.  Cytokine and lipid mediator networks in tuberculosis , 2015, Immunological reviews.

[3]  Steven F. Baker,et al.  The Specialized Proresolving Mediator 17-HDHA Enhances the Antibody-Mediated Immune Response against Influenza Virus: A New Class of Adjuvant? , 2014, The Journal of Immunology.

[4]  C. Serhan,et al.  Identification of 14-series sulfido-conjugated mediators that promote resolution of infection and organ protection , 2014, Proceedings of the National Academy of Sciences.

[5]  E. Dennis,et al.  Comprehensive ultra-performance liquid chromatographic separation and mass spectrometric analysis of eicosanoid metabolites in human samples. , 2014, Journal of chromatography. A.

[6]  C. Glass,et al.  Phospholipase A2 regulates eicosanoid class switching during inflammasome activation , 2014, Proceedings of the National Academy of Sciences.

[7]  A. Sher,et al.  Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk , 2014, Nature.

[8]  Charles N. Serhan,et al.  Pro-resolving lipid mediators are leads for resolution physiology , 2014, Nature.

[9]  G. Wong,et al.  Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages. , 2014, Immunity.

[10]  W. Gordon,et al.  Spatial organization of lipids in the human retina and optic nerve by MALDI imaging mass spectrometry[S] , 2014, Journal of Lipid Research.

[11]  C. Patrono,et al.  Nonsteroidal Anti-Inflammatory Drugs and the Heart , 2014, Circulation.

[12]  Shankar Subramaniam,et al.  Modeling of eicosanoid fluxes reveals functional coupling between cyclooxygenases and terminal synthases. , 2014, Biophysical journal.

[13]  S. Narumiya,et al.  Prostaglandin E2–EP3 Signaling Induces Inflammatory Swelling by Mast Cell Activation , 2014, The Journal of Immunology.

[14]  C. Glass,et al.  NCoR Repression of LXRs Restricts Macrophage Biosynthesis of Insulin-Sensitizing Omega 3 Fatty Acids , 2013, Cell.

[15]  A. Aderem,et al.  Lipidomic Profiling of Influenza Infection Identifies Mediators that Induce and Resolve Inflammation , 2013, Cell.

[16]  M. Gelb,et al.  Lymphoid tissue phospholipase A2 group IID resolves contact hypersensitivity by driving antiinflammatory lipid mediators , 2013, The Journal of experimental medicine.

[17]  E. Latz,et al.  Activation and regulation of the inflammasomes , 2013, Nature Reviews Immunology.

[18]  M. Gelb,et al.  Mast cell maturation is driven via a group III phospholipase A2-prostaglandin D2–DP1 receptor paracrine axis , 2013, Nature Immunology.

[19]  Bastian R. Angermann,et al.  Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo , 2013, Nature.

[20]  Y. Kawaoka,et al.  The Lipid Mediator Protectin D1 Inhibits Influenza Virus Replication and Improves Severe Influenza , 2013, Cell.

[21]  A. Ewing,et al.  Single-cell lipidomics: characterizing and imaging lipids on the surface of individual Aplysia californica neurons with cluster secondary ion mass spectrometry. , 2013, Analytical chemistry.

[22]  G. FitzGerald,et al.  Historical lessons in translational medicine: cyclooxygenase inhibition and P2Y12 antagonism. , 2013, Circulation research.

[23]  C. Serhan,et al.  Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. , 2012, Blood.

[24]  V. O’Donnell,et al.  Esterified eicosanoids: generation, characterization and function. , 2012, Biochimica et biophysica acta.

[25]  S. Leppla,et al.  Rapid induction of inflammatory lipid mediators by the inflammasome in vivo , 2012, Nature.

[26]  E. Dennis,et al.  Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling , 2012, Proceedings of the National Academy of Sciences.

[27]  Edward A Dennis,et al.  Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors , 2012, Proceedings of the National Academy of Sciences.

[28]  Charles N. Serhan,et al.  Infection Regulates Pro-Resolving Mediators that Lower Antibiotic Requirements , 2012, Nature.

[29]  Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis , 2012, Critical Care.

[30]  G. FitzGerald,et al.  Cyclooxygenase Inhibition and P 2 Y 12 Antagonism , 2012 .

[31]  Edward A Dennis,et al.  The human plasma lipidome. , 2011, The New England journal of medicine.

[32]  E. Dennis,et al.  High-throughput lipidomic analysis of fatty acid derived eicosanoids and N-acylethanolamines. , 2011, Biochimica et biophysica acta.

[33]  E. Dennis,et al.  Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. , 2011, Chemical reviews.

[34]  C. Glass,et al.  Specificity of eicosanoid production depends on the TLR‐4‐stimulated macrophage phenotype , 2011, Journal of leukocyte biology.

[35]  J. Tschopp,et al.  The inflammasome: an integrated view , 2011, Immunological reviews.

[36]  Edward A Dennis,et al.  Applications of mass spectrometry to lipids and membranes. , 2011, Annual review of biochemistry.

[37]  V. Blaho,et al.  5-Lipoxygenase–Deficient Mice Infected with Borrelia burgdorferi Develop Persistent Arthritis , 2011, The Journal of Immunology.

[38]  Christopher P. Thomas,et al.  Nitroarachidonic Acid, a Novel Peroxidase Inhibitor of Prostaglandin Endoperoxide H Synthases 1 and 2* , 2011, The Journal of Biological Chemistry.

[39]  B. Garcia,et al.  Proteomics , 2011, Journal of biomedicine & biotechnology.

[40]  H. Toh,et al.  Protective role of the leukotriene B4 receptor BLT2 in murine inflammatory colitis , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[41]  M. P. Cole,et al.  Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. , 2010, Nature chemical biology.

[42]  A. R. Moore,et al.  Resolution of Inflammation in Murine Autoimmune Arthritis Is Disrupted by Cyclooxygenase-2 Inhibition and Restored by Prostaglandin E2-Mediated Lipoxin A4 Production , 2010, The Journal of Immunology.

[43]  Chu Chen,et al.  COX-2's new role in inflammation. , 2010, Nature chemical biology.

[44]  M. Newcomer,et al.  Location, Location, Location: Compartmentalization of Early Events in Leukotriene Biosynthesis* , 2010, The Journal of Biological Chemistry.

[45]  M. V. Suresh,et al.  Leukotriene B4 Is a Physiologically Relevant Endogenous Peroxisome Proliferator-activated Receptor-α Agonist* , 2010, The Journal of Biological Chemistry.

[46]  David M. Tobin,et al.  The lta4h Locus Modulates Susceptibility to Mycobacterial Infection in Zebrafish and Humans , 2010, Cell.

[47]  C. Glass,et al.  Pharmacological correction of a defect in PPARγ signaling ameliorates disease severity in Cftr-deficient mice , 2010, Nature Medicine.

[48]  D. Gilroy,et al.  Effects of Low-Dose Aspirin on Acute Inflammatory Responses in Humans1 , 2009, The Journal of Immunology.

[49]  E. Dennis,et al.  Lipidomic Analysis of Dynamic Eicosanoid Responses during the Induction and Resolution of Lyme Arthritis* , 2009, The Journal of Biological Chemistry.

[50]  Dennis,et al.  An integrated omics analysis of eicosanoid biology. , 2009 .

[51]  Jilly F. Evans,et al.  The nuclear membrane organization of leukotriene synthesis , 2008, Proceedings of the National Academy of Sciences.

[52]  K. Sakimura,et al.  Cysteinyl leukotriene 2 receptor‐mediated vascular permeability via transendothelial vesicle transport , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[53]  P. Taylor,et al.  12/15-Lipoxygenase Regulates the Inflammatory Response to Bacterial Products In Vivo1 , 2008, The Journal of Immunology.

[54]  V. Blaho,et al.  Arthritis develops but fails to resolve during inhibition of cyclooxygenase 2 in a murine model of Lyme disease. , 2008, Arthritis and rheumatism.

[55]  L. Marnett,et al.  Non-redundant Functions of Cyclooxygenases: Oxygenation of Endocannabinoids* , 2008, Journal of Biological Chemistry.

[56]  E. Kostenis,et al.  The Role of the Prostaglandin D2 Receptor, DP, in Eosinophil Trafficking1 , 2007, The Journal of Immunology.

[57]  S. Basu Novel cyclooxygenase‐catalyzed bioactive prostaglandin F2α from physiology to new principles in inflammation , 2007, Medicinal research reviews.

[58]  C. Saper,et al.  EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses , 2007, Nature Neuroscience.

[59]  E. Dennis,et al.  TLR-4 and Sustained Calcium Agonists Synergistically Produce Eicosanoids Independent of Protein Synthesis in RAW264.7 Cells* , 2007, Journal of Biological Chemistry.

[60]  William L. Smith,et al.  Enzymes and Receptors of Prostaglandin Pathways with Arachidonic Acid-derived Versus Eicosapentaenoic Acid-derived Substrates and Products*♦ , 2007, Journal of Biological Chemistry.

[61]  S. Nigam,et al.  Structure, biochemistry and biology of hepoxilins , 2007, The FEBS journal.

[62]  D. Kroetz,et al.  Cytochrome P450 Eicosanoids are Activators of Peroxisome Proliferator-Activated Receptor α , 2007, Drug Metabolism and Disposition.

[63]  G. FitzGerald,et al.  Identification of a Novel Prostaglandin Reductase Reveals the Involvement of Prostaglandin E2 Catabolism in Regulation of Peroxisome Proliferator-activated Receptor γ Activation* , 2007, Journal of Biological Chemistry.

[64]  Bruce D Hammock,et al.  Soluble epoxide hydrolase inhibition reveals novel biological functions of epoxyeicosatrienoic acids (EETs). , 2007, Prostaglandins & other lipid mediators.

[65]  C. Woolf,et al.  Prostaglandin E2 Receptor EP4 Contributes to Inflammatory Pain Hypersensitivity , 2006, Journal of Pharmacology and Experimental Therapeutics.

[66]  D. Nebert,et al.  The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis , 2006, Nature Reviews Cancer.

[67]  R. Murphy,et al.  Eicosanoid Transcellular Biosynthesis: From Cell-Cell Interactions to in Vivo Tissue Responses , 2006, Pharmacological Reviews.

[68]  M. Yaqoob,et al.  COX-2 in inflammation and resolution. , 2006, Molecular interventions.

[69]  V. O’Donnell,et al.  Inflammation and immune regulation by 12/15-lipoxygenases. , 2006, Progress in lipid research.

[70]  G. O'neill,et al.  Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Y. Chen,et al.  Fatty Acid Transduction of Nitric Oxide Signaling , 2005, Journal of Biological Chemistry.

[72]  M. Murakami,et al.  Coupling between cyclooxygenases and terminal prostanoid synthases. , 2005, Biochemical and biophysical research communications.

[73]  J. Shyy,et al.  The antiinflammatory effect of laminar flow: the role of PPARgamma, epoxyeicosatrienoic acids, and soluble epoxide hydrolase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  C. Serhan,et al.  Anti-inflammatory circuitry: lipoxin, aspirin-triggered lipoxins and their receptor ALX. , 2005, Prostaglandins, leukotrienes, and essential fatty acids.

[75]  S. Fleury,et al.  Activation of the Prostaglandin D2 Receptor DP2/CRTH2 Increases Allergic Inflammation in Mouse 1 , 2005, The Journal of Immunology.

[76]  T. Hand,et al.  Prostaglandin D2 mediates neuronal protection via the DP1 receptor , 2005, Journal of neurochemistry.

[77]  M. Tominaga,et al.  Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins , 2005, Molecular pain.

[78]  K. Kugiyama,et al.  Role of Protein Kinase C , 2005 .

[79]  R. Mrsny,et al.  Polymorphonuclear Cell Transmigration Induced by Pseudomonas aeruginosa Requires the Eicosanoid Hepoxilin A31 , 2004, The Journal of Immunology.

[80]  J. Schifferli,et al.  Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. , 2004, Blood.

[81]  T. Maruyama,et al.  PGE2 exerts its effect on the LPS-induced release of TNF-α, ET-1, IL-lα, IL-6 and IL-10 via the EP2 and EP4 receptor in rat liver macrophages , 2004 .

[82]  P. Mukherjee,et al.  Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[83]  T. Savidge,et al.  Identification of hepoxilin A3 in inflammatory events: a required role in neutrophil migration across intestinal epithelia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[84]  T. Maruyama,et al.  PGE2 exerts its effect on the LPS-induced release of TNF-alpha, ET-1, IL-1alpha, IL-6 and IL-10 via the EP2 and EP4 receptor in rat liver macrophages. , 2004, Prostaglandins & other lipid mediators.

[85]  Song‐Pyo Hong,et al.  Novel Docosanoids Inhibit Brain Ischemia-Reperfusion-mediated Leukocyte Infiltration and Pro-inflammatory Gene Expression* , 2003, Journal of Biological Chemistry.

[86]  J. Tamargo,et al.  Thromboxane A2-Induced Inhibition of Voltage-Gated K+ Channels and Pulmonary Vasoconstriction: Role of Protein Kinase C&zgr; , 2003, Circulation research.

[87]  K. Katagiri,et al.  Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity , 2003, Nature Immunology.

[88]  T. Lawrence,et al.  Anti-inflammatory lipid mediators and insights into the resolution of inflammation , 2002, Nature Reviews Immunology.

[89]  J. Vane Back to an Aspirin a Day? , 2002, Science.

[90]  J. Vane Biomedicine. Back to an aspirin a day? , 2002, Science.

[91]  R. Roman,et al.  P-450 metabolites of arachidonic acid in the control of cardiovascular function. , 2002, Physiological reviews.

[92]  C. Funk,et al.  Prostaglandins and leukotrienes: advances in eicosanoid biology. , 2001, Science.

[93]  Charles N. Serhan,et al.  Lipid mediator class switching during acute inflammation: signals in resolution , 2001, Nature Immunology.

[94]  S. Narumiya,et al.  Characterization of EP receptor subtypes responsible for prostaglandin E2‐induced pain responses by use of EP1 and EP3 receptor knockout mice , 2001, British journal of pharmacology.

[95]  F. Fitzpatrick,et al.  Regulated formation of eicosanoids. , 2001, The Journal of clinical investigation.

[96]  Y. Sugimoto,et al.  Regulation of TNFalpha and interleukin-10 production by prostaglandins I(2) and E(2): studies with prostaglandin receptor-deficient mice and prostaglandin E-receptor subtype-selective synthetic agonists. , 2001, Biochemical pharmacology.

[97]  T. Willson,et al.  Prostacyclin-mediated activation of peroxisome proliferator-activated receptor delta in colorectal cancer. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[98]  S. Hwang,et al.  Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[99]  R. Garavito,et al.  Cyclooxygenases: structural, cellular, and molecular biology. , 2000, Annual review of biochemistry.

[100]  A. Brash Lipoxygenases: Occurrence, Functions, Catalysis, and Acquisition of Substrate* , 1999, The Journal of Biological Chemistry.

[101]  T. Willson,et al.  Interleukin-4-dependent production of PPAR-γ ligands in macrophages by 12/15-lipoxygenase , 1999, Nature.

[102]  T. Kadowaki,et al.  Evidence for direct binding of fatty acids and eicosanoids to human peroxisome proliferators-activated receptor alpha. , 1999, Biochemical and biophysical research communications.

[103]  B. Samuelsson,et al.  Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[104]  J. Morrow,et al.  Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARdelta. , 1999, Genes & development.

[105]  M. Peters-Golden,et al.  Arachidonic Acid Is Preferentially Metabolized by Cyclooxygenase-2 to Prostacyclin and Prostaglandin E2 * , 1999, The Journal of Biological Chemistry.

[106]  T. Willson,et al.  Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. , 1999, Nature.

[107]  M. Murakami,et al.  Segregated coupling of phospholipases A2, cyclooxygenases, and terminal prostanoid synthases in different phases of prostanoid biosynthesis in rat peritoneal macrophages. , 1998, Journal of immunology.

[108]  D. Aharony Pharmacology of leukotriene receptor antagonists. , 1998, American journal of respiratory and critical care medicine.

[109]  J. Balsinde,et al.  Antisense Inhibition of Group VI Ca2+-independent Phospholipase A2 Blocks Phospholipid Fatty Acid Remodeling in Murine P388D1 Macrophages* , 1997, The Journal of Biological Chemistry.

[110]  S. Narumiya,et al.  Altered pain perception and inflammatory response in mice lacking prostacyclin receptor , 1997, Nature.

[111]  Peter J. Brown,et al.  Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ , 1997 .

[112]  J. Lehmann,et al.  Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[113]  W. Wahli,et al.  The PPARα–leukotriene B4 pathway to inflammation control , 1996, Nature.

[114]  W. Wahli,et al.  The PPARalpha-leukotriene B4 pathway to inflammation control. , 1996, Nature.

[115]  B. Spiegelman,et al.  15-Deoxy-Δ 12,14-Prostaglandin J 2 is a ligand for the adipocyte determination factor PPARγ , 1995, Cell.

[116]  J. Lehmann,et al.  A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation , 1995, Cell.

[117]  C. Serhan,et al.  Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[118]  P. Janmey,et al.  Thrombin receptor ligation and activated rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets , 1995, Cell.

[119]  B. Spiegelman,et al.  15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. , 1995, Cell.

[120]  R. Klocke,et al.  THE AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE , 1994 .

[121]  M. Brezinski,et al.  Selective incorporation of (15S)-hydroxyeicosatetraenoic acid in phosphatidylinositol of human neutrophils: agonist-induced deacylation and transformation of stored hydroxyeicosanoids. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[122]  Z. Katušić,et al.  Thromboxane A2 Receptor Antagonists Inhibit Endothelium‐Dependent Contractions , 1990, Hypertension.

[123]  L. Wheeler,et al.  Prostaglandin F2 alpha effects on intraocular pressure negatively correlate with FP-receptor stimulation. , 1989, Investigative ophthalmology & visual science.

[124]  J. Maclouf,et al.  Transcellular biosynthesis of eicosanoids. , 1989, Pharmacological research.

[125]  M. Hamberg,et al.  Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[126]  K. Johnson An Update. , 1984, Journal of food protection.

[127]  B. Samuelsson Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. , 1983, Science.

[128]  M. A. Bray,et al.  LEUKOTRIENE B4: A MEDIATOR OF VASCULAR PERMEABILITY , 1981, British journal of pharmacology.

[129]  D. Frisbie,et al.  Nonsteroidal antiinflammatory drugs. , 1981, Delaware medical journal.

[130]  H. Weiss,et al.  Prostacyclin (prostaglandin I2, PGI2) inhibits platelet adhesion and thrombus formation on subendothelium. , 1979, Blood.

[131]  J. Vane,et al.  Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. , 1977, Thrombosis research.

[132]  G. Fülgraff Prostaglandins and inflammation. , 1974, Advances in clinical pharmacology.

[133]  Ruth E. Hartley,et al.  An integrated view. , 1973 .

[134]  北村 聖 "The New England Journal of Medicine". , 1962, British medical journal.