Alternation Elimination for Automata over Nested Words

This paper presents constructions for translating alternating automata into nondeterministic nested-word automata (NWAs). With these alternation-elimination constructions at hand, we straightforwardly obtain translations from various temporal logics over nested words from the literature like CaRet and µNWTL, and extensions thereof to NWAs, which correct, simplify, improve, and generalize the previously given translations. Our alternation-elimination constructions are instances of an alternation-elimination scheme for automata that operate over the tree unfolding of graphs. We obtain these instances by providing constructions for complementing restricted classes of automata with respect to the graphs given by nested words. The scheme generalizes our alternation-elimination scheme for word automata and the presented complementation constructions generalize existing complementation constructions for word automata.

[1]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[2]  Sriram K. Rajamani,et al.  Boolean Programs: A Model and Process for Software Analysis , 2000 .

[3]  John C. Shepherdson,et al.  The Reduction of Two-Way Automata to One-Way Automata , 1959, IBM J. Res. Dev..

[4]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[5]  Orna Kupferman,et al.  Weak alternating automata are not that weak , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[6]  Christian Dax,et al.  Alternation Elimination by Complementation (Extended Abstract) , 2008, LPAR.

[7]  Amir Pnueli,et al.  Temporal Logic in Specification , 1987, Lecture Notes in Computer Science.

[8]  Laura Bozzelli Alternating Automata and a Temporal Fixpoint Calculus for Visibly Pushdown Languages , 2007, CONCUR.

[9]  R. Alur,et al.  Adding nesting structure to words , 2006, JACM.

[10]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[11]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[12]  Moshe Y. Vardi A temporal fixpoint calculus , 1988, POPL '88.

[13]  E. Muller David,et al.  Alternating automata on infinite trees , 1987 .

[14]  Rajeev Alur,et al.  Analysis of recursive state machines , 2001, TOPL.

[15]  Neil Immerman,et al.  First-Order and Temporal Logics for Nested Words , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[16]  Orna Kupferman,et al.  Complementation Constructions for Nondeterministic Automata on Infinite Words , 2005, TACAS.

[17]  Satoru Miyano,et al.  Alternating Finite Automata on omega-Words , 1984, CAAP.

[18]  Kousha Etessami,et al.  Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations , 2005, JACM.

[19]  David E. Muller,et al.  Alternating Automata on Infinite Trees , 1987, Theor. Comput. Sci..

[20]  Simon L. Peyton Jones,et al.  Imperative functional programming , 1993, POPL '93.

[21]  Martin Lange Linear Time Logics Around PSL: Complexity, Expressiveness, and a Little Bit of Succinctness , 2007, CONCUR.

[22]  Kim G. Larsen,et al.  On Modal Refinement and Consistency , 2007, CONCUR.

[23]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[24]  Howard Barringer,et al.  Temporal Logic with Fixed Points , 1987, Temporal Logic in Specification.

[25]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[26]  Moshe Y. Vardi Reasoning about The Past with Two-Way Automata , 1998, ICALP.

[27]  David E. Muller,et al.  Alternating Automata, the Weak Monadic Theory of Trees and its Complexity , 1992, Theor. Comput. Sci..

[28]  Christian Dax,et al.  On Regular Temporal Logics with Past, , 2009, ICALP.

[29]  Moshe Y. Vardi A Note on the Reduction of Two-Way Automata to One-Way Automata , 1989, Inf. Process. Lett..