Comparing the combinational complexities of arithmetic functions

Methods are presented for finding reductions between the computations of certain arithmetic functions that preserve asymptotic Boolean complexities (circuit depth or size). They can be used to show, for example, that all nonlinear algebraic functions are as difficult as integer multiplication with respect to circuit size. As a consequence, any lower or upper bound (e.g., <italic>O</italic>(<italic>n</italic> log <italic>n</italic> log log <italic>n</italic>)) for one of them applies to the whole class. It is also shown that, with respect to depth and size simultaneously, multiplication is reducible to any nonlinear and division to any nonpolynomial algebraic function.

[1]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[2]  H. T. Kung,et al.  The Area-Time Complexity of Binary Multiplication , 1981, JACM.

[3]  S. Cook,et al.  ON THE MINIMUM COMPUTATION TIME OF FUNCTIONS , 1969 .

[4]  Arnold Schönhage,et al.  The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .

[5]  H. Piaggio Algebraic Functions , 1952, Nature.

[6]  Yuri Petrovich Ofman,et al.  On the Algorithmic Complexity of Discrete Functions , 1962 .

[7]  Allan Borodin,et al.  The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.

[8]  Helmut Alt,et al.  Algorithms for square root extraction , 1977 .

[9]  R. Mark,et al.  Note on references , 1973 .

[10]  Otto Spaniol Computer Arithmetic: Logic and Design , 1981 .

[11]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[12]  Helmut Alt,et al.  Comparison of arithmetic functions with respect to boolean circuit depth , 1984, STOC '84.

[13]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[14]  Journal of the Association for Computing Machinery , 1961, Nature.

[15]  Stephen A. Cook,et al.  Log Depth Circuits for Division and Related Problems , 1986, SIAM J. Comput..

[16]  Franco P. Preparata,et al.  Area-Time Optimal VLSI Networks for Computing Integer Multiplications and Discrete Fourier Transform , 1981, ICALP.

[17]  Helmut Alt,et al.  Functions Equivalent to Integer Multiplication , 1980, International Colloquium on Automata, Languages and Programming.

[18]  G. Bliss Algebraic functions , 1933 .

[19]  Helmut Alt,et al.  Multiplication is the easiest nontrivial arithmetic function , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[20]  M. Eichler,et al.  Einführung in die Theorie der algebraischen Zahlen und Funktionen , 1963 .

[21]  H. T. Kung,et al.  All Algebraic Functions Can Be Computed Fast , 1978, JACM.

[22]  Stephen A. Cook,et al.  The Classifikation of Problems which have Fast Parallel Algorithms , 1983, FCT.

[23]  Stephen A. Cook,et al.  Log Depth Circuits for Division and Related Problems , 1984, SIAM J. Comput..

[24]  Richard P. Brent,et al.  Fast Multiple-Precision Evaluation of Elementary Functions , 1976, JACM.