Carbon Nanotube Electronics

[1]  Aaron D. Franklin,et al.  Electronics: The road to carbon nanotube transistors , 2013, Nature.

[2]  W. Haensch,et al.  Carbon nanotube complementary wrap-gate transistors. , 2013, Nano letters.

[3]  M. Vaidyanathan,et al.  RF Linearity Potential of Carbon-Nanotube Transistors Versus MOSFETs , 2013, IEEE Transactions on Nanotechnology.

[4]  Ali Afzali,et al.  High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography. , 2013, ACS nano.

[5]  Jeffrey Bokor,et al.  Short-channel transistors constructed with solution-processed carbon nanotubes. , 2013, ACS nano.

[6]  W. Haensch,et al.  High-density integration of carbon nanotubes via chemical self-assembly. , 2012, Nature nanotechnology.

[7]  M. Engel,et al.  High-frequency performance of scaled carbon nanotube array field-effect transistors , 2012, 1208.0756.

[8]  Sheng Wang,et al.  Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0.4 V , 2012 .

[9]  A. Niknejad,et al.  Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. , 2012, Nano letters.

[10]  Davood Shahrjerdi,et al.  Variability in carbon nanotube transistors: improving device-to-device consistency. , 2012, ACS nano.

[11]  Eleanor E. B. Campbell,et al.  Schottky barriers in carbon nanotube-metal contacts , 2011 .

[12]  François Léonard,et al.  Electrical contacts to one- and two-dimensional nanomaterials. , 2011, Nature nanotechnology.

[13]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[14]  P. Kim,et al.  Low bias electron scattering in structure-identified single wall carbon nanotubes: role of substrate polar phonons. , 2011, Physical review letters.

[15]  Hongsik Park,et al.  Carbon nanotube thin film transistors on flexible substrates , 2011 .

[16]  A. Cummings,et al.  Electrostatic effects on contacts to carbon nanotube transistors , 2011, 1106.2186.

[17]  M. Vaidyanathan,et al.  RF Performance Potential of Array-Based Carbon-Nanotube Transistors—Part II: Extrinsic Results , 2011, IEEE Transactions on Electron Devices.

[18]  P. Avouris,et al.  Ultimate RF Performance Potential of Carbon Electronics , 2011, IEEE Transactions on Microwave Theory and Techniques.

[19]  Kang L. Wang,et al.  Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes. , 2011, ACS nano.

[20]  S. Kishimoto,et al.  Flexible high-performance carbon nanotube integrated circuits. , 2011, Nature nanotechnology.

[21]  P. Solomon,et al.  Contact Resistance to a One-Dimensional Quasi-Ballistic Nanotube/Wire , 2011, IEEE Electron Device Letters.

[22]  Zhihong Chen,et al.  Length scaling of carbon nanotube transistors. , 2010, Nature nanotechnology.

[23]  Xue Lin,et al.  Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer , 2010 .

[24]  William A. Goddard,et al.  Contact Resistance for “End-Contacted” Metal−Graphene and Metal−Nanotube Interfaces from Quantum Mechanics , 2010 .

[25]  G. Privitera,et al.  Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation , 2010 .

[26]  S. Stemmer,et al.  Quantification of trap densities at dielectric/III-V semiconductor interfaces , 2010 .

[27]  Albert Lin,et al.  Current Scaling in Aligned Carbon Nanotube Array Transistors With Local Bottom Gating , 2010, IEEE Electron Device Letters.

[28]  H. Kataura,et al.  Diameter-Selective Metal/Semiconductor Separation of Single-wall Carbon Nanotubes by Agarose Gel , 2010 .

[29]  Mark C. Hersam,et al.  Recent Developments in Carbon Nanotube Sorting and Selective Growth , 2010 .

[30]  E. Pop Energy dissipation and transport in nanoscale devices , 2010, 1003.4058.

[31]  Yan Li,et al.  Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. , 2009, Nano letters.

[32]  Ming Zheng,et al.  DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes , 2009, Nature.

[33]  David B. Janes,et al.  Toward surround gates on vertical single-walled carbon nanotube devices , 2009 .

[34]  Yi Xuan,et al.  Fully Transparent Thin‐Film Transistors Based on Aligned Carbon Nanotube Arrays and Indium Tin Oxide Electrodes , 2009, Advanced materials.

[35]  D. M. Porterfield,et al.  Electrochemical biosensor of nanocube-augmented carbon nanotube networks. , 2009, ACS nano.

[36]  Yan Li,et al.  Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. , 2008, Nano letters.

[37]  M. Hersam Progress towards monodisperse single-walled carbon nanotubes. , 2008, Nature nanotechnology.

[38]  R. Reifenberger,et al.  Determining the optimal contact length for a metal/multiwalled carbon nanotube interconnect , 2008 .

[39]  Eric Pop,et al.  The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes , 2008, Nanotechnology.

[40]  J. Knoch,et al.  Tunneling phenomena in carbon nanotube field‐effect transistors , 2008 .

[41]  John A Rogers,et al.  Radio frequency analog electronics based on carbon nanotube transistors , 2008, Proceedings of the National Academy of Sciences.

[42]  P. Avouris,et al.  Externally Assembled Gate-All-Around Carbon Nanotube Field-Effect Transistor , 2008, IEEE Electron Device Letters.

[43]  S. Khondaker,et al.  Local-gated single-walled carbon nanotube field effect transistors assembled by AC dielectrophoresis , 2007, Nanotechnology.

[44]  Yan Li,et al.  Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits , 2007 .

[45]  Gianaurelio Cuniberti,et al.  Modeling extended contacts for nanotube and graphene devices , 2007, 0711.1088.

[46]  Cherie R. Kagan,et al.  Chemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arrays. , 2007, Journal of the American Chemical Society.

[47]  H. Wong,et al.  Modeling and Analysis of Planar-Gate Electrostatic Capacitance of 1-D FET With Multiple Cylindrical Conducting Channels , 2007, IEEE Transactions on Electron Devices.

[48]  Horst Hahn,et al.  Ultra-large-scale directed assembly of single-walled carbon nanotube devices. , 2007, Nano letters.

[49]  Mengqiu Long,et al.  Effect of intertube interaction on the transport properties of a carbon double-nanotube device , 2007 .

[50]  M. Lundstrom,et al.  Nonequilibrium Green's Function Treatment of Phonon Scattering in Carbon-Nanotube Transistors , 2007, IEEE Transactions on Electron Devices.

[51]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[52]  F. Léonard,et al.  Properties of short channel ballistic carbon nanotube transistors with ohmic contacts , 2006, Nanotechnology.

[53]  Jeffrey Bokor,et al.  Effect of diameter variation in a large set of carbon nanotube transistors. , 2006, Nano letters.

[54]  A. Rinzler,et al.  An Integrated Logic Circuit Assembled on a Single Carbon Nanotube , 2006, Science.

[55]  D. Farmer,et al.  Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization. , 2006, Nano letters.

[56]  Niraj Sinha,et al.  Carbon nanotube-based sensors. , 2006, Journal of nanoscience and nanotechnology.

[57]  H. Dai,et al.  DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high kappa dielectrics for nanotube transistors with 60 mV/decade switching. , 2006, Journal of the American Chemical Society.

[58]  F. Léonard Crosstalk between nanotube devices: contact and channel effects , 2006, cond-mat/0602006.

[59]  G. Cuniberti,et al.  Contact dependence of carrier injection in carbon nanotubes: an ab initio study. , 2005, Physical review letters.

[60]  J. Appenzeller,et al.  Comparing carbon nanotube transistors - the ideal choice: a novel tunneling device design , 2005, IEEE Transactions on Electron Devices.

[61]  P. Avouris,et al.  High-performance dual-gate carbon nanotube FETs with 40-nm gate length , 2005, IEEE Electron Device Letters.

[62]  Phaedon Avouris,et al.  The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. , 2005, Nano letters.

[63]  M. Lundstrom,et al.  Role of phonon scattering in carbon nanotube field-effect transistors , 2005 .

[64]  P. McEuen,et al.  Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. , 2005, Physical review letters.

[65]  P. Avouris,et al.  Self-aligned carbon nanotube transistors with charge transfer doping , 2005, cond-mat/0511039.

[66]  P. Avouris,et al.  Charge transfer induced polarity switching in carbon nanotube transistors. , 2005, Nano letters.

[67]  Yutaka Ohno,et al.  n-type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes , 2005 .

[68]  H. Dai,et al.  High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. , 2004, Nano letters.

[69]  J. Appenzeller,et al.  Band-to-band tunneling in carbon nanotube field-effect transistors. , 2004, Physical review letters.

[70]  David L. Pulfrey,et al.  Quantum capacitance in nanoscale device modeling , 2004 .

[71]  Qian Wang,et al.  Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[72]  M. Lundstrom,et al.  Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays , 2004, cond-mat/0406494.

[73]  M. Radosavljevic,et al.  Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors. , 2004, Physical review letters.

[74]  L. C. Castro,et al.  Electrostatics of partially gated carbon nanotube FETs , 2004, IEEE Transactions on Nanotechnology.

[75]  Alexander Star,et al.  Short-channel effects in contact-passivated nanotube chemical sensors , 2003 .

[76]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[77]  H. Dai,et al.  Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts , 2003, cond-mat/0309044.

[78]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[79]  Mark S. Lundstrom,et al.  A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors , 2003, IEEE Transactions on Electron Devices.

[80]  P. McEuen,et al.  Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope. , 2003, Physical review letters.

[81]  Louis E. Brus,et al.  Controlling Energy-Level Alignments at Carbon Nanotube/Au Contacts , 2003 .

[82]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[83]  Mikko Ritala,et al.  Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .

[84]  Richard Martel,et al.  Controlling doping and carrier injection in carbon nanotube transistors , 2002 .

[85]  J. Tersoff,et al.  Role of fermi-level pinning in nanotube schottky diodes , 2000, Physical review letters.

[86]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[87]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[88]  Zhongfan Liu,et al.  Selective positioning and integration of individual single-walled carbon nanotubes. , 2009, Nano letters.

[89]  Joachim Knoch,et al.  Comparison of transport properties in carbon nanotube field-effect transistors with Schottky contacts and doped source/drain contacts , 2005 .

[90]  C Lavoie,et al.  Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. , 2001, Physical review letters.