Recent Advances in Stochastic Sensor Control for Multi-Object Tracking

In many multi-object tracking applications, the sensor(s) may have controllable states. Examples include movable sensors in multi-target tracking applications in defence, and unmanned air vehicles (UAVs) as sensors in multi-object systems used in civil applications such as inspection and fault detection. Uncertainties in the number of objects (due to random appearances and disappearances) as well as false alarms and detection uncertainties collectively make the above problem a highly challenging stochastic sensor control problem. Numerous solutions have been proposed to tackle the problem of precise control of sensor(s) for multi-object detection and tracking, and, in this work, recent contributions towards the advancement in the domain are comprehensively reviewed. After an introduction, we provide an overview of the sensor control problem and present the key components of sensor control solutions in general. Then, we present a categorization of the existing methods and review those methods under each category. The categorization includes a new generation of solutions called selective sensor control that have been recently developed for applications where particular objects of interest need to be accurately detected and tracked by controllable sensors.

[1]  Ba-Ngu Vo,et al.  Void Probabilities and Cauchy–Schwarz Divergence for Generalized Labeled Multi-Bernoulli Models , 2015, IEEE Transactions on Signal Processing.

[2]  Giorgio Battistelli,et al.  40 Years of tracking for radar systems: A cross-disciplinary academic and industrial viewpoint , 2017, 2017 International Conference on Control, Automation and Information Sciences (ICCAIS).

[3]  Giorgio Battistelli,et al.  Consensus Labeled Random Finite Set Filtering for Distributed Multi-Object Tracking , 2015, ArXiv.

[4]  Ronald Mahler,et al.  Probabilistic objective functions for sensor management , 2004, SPIE Defense + Commercial Sensing.

[5]  Giorgio Battistelli,et al.  Consensus CPHD Filter for Distributed Multitarget Tracking , 2013, IEEE Journal of Selected Topics in Signal Processing.

[6]  José Carlos Príncipe,et al.  Closed-form cauchy-schwarz PDF divergence for mixture of Gaussians , 2011, The 2011 International Joint Conference on Neural Networks.

[7]  Lawrence Carin,et al.  Stochastic Control Theory for Sensor Management , 2008 .

[8]  Giorgio Battistelli,et al.  Distributed fusion of multitarget densities and consensus PHD/CPHD filters , 2015, Defense + Security Symposium.

[9]  Federico Castanedo,et al.  A Review of Data Fusion Techniques , 2013, TheScientificWorldJournal.

[10]  Wei Yi,et al.  Multi-sensor control for multi-target tracking using Cauchy-Schwarz divergence , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[11]  Xiaoying Wang,et al.  Constrained Sensor Control for Labeled Multi-Bernoulli Filter Using Cauchy-Schwarz Divergence , 2017, IEEE Signal Processing Letters.

[12]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[13]  Ba-Tuong Vo,et al.  Sensor management for multi-target tracking via multi-Bernoulli filtering , 2013, Autom..

[14]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[15]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[16]  Keith D. Kastella,et al.  Foundations and Applications of Sensor Management , 2010 .

[17]  Ronald Mahler,et al.  MULTITARGET SENSOR MANAGEMENT OF DISPERSED MOBILE SENSORS , 2004 .

[18]  Ba-Ngu Vo,et al.  An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter , 2016, IEEE Transactions on Signal Processing.

[19]  Alireza Bab-Hadiashar,et al.  Robust Multi-Bernoulli Sensor Selection for Multi-Target Tracking in Sensor Networks , 2013, IEEE Signal Processing Letters.

[20]  Ronald P. S. Mahler,et al.  Multisensor-multitarget sensor management: a unified Bayesian approach , 2003, SPIE Defense + Commercial Sensing.

[21]  Alireza Bab-Hadiashar,et al.  Sensor Control for Selective Object Tracking Using Labeled Multi-Bernoulli Filter , 2018, 2018 21st International Conference on Information Fusion (FUSION).

[22]  Wei Yi,et al.  Distributed fusion with multi-Bernoulli filter based on generalized Covariance Intersection , 2015, 2015 IEEE Radar Conference (RadarCon).

[23]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[24]  Hung Gia Hoang,et al.  Control of a mobile sensor for multi-target tracking using multi-target/object Multi-Bernoulli filter , 2012, 2012 International Conference on Control, Automation and Information Sciences (ICCAIS).

[25]  Ba-Ngu Vo,et al.  The Cauchy-Schwarz divergence for poisson point processes , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[26]  S. Shankar Sastry,et al.  Markov Chain Monte Carlo Data Association for Multi-Target Tracking , 2009, IEEE Transactions on Automatic Control.

[27]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[28]  Alfred O. Hero,et al.  Multi-target Sensor Management Using Alpha-Divergence Measures , 2003, IPSN.

[29]  R. Mahler,et al.  PHD filters of higher order in target number , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[30]  Alireza Bab-Hadiashar,et al.  Accelerated Multi-Sensor Control for Selective Multi-Object Tracking , 2018, 2018 International Conference on Control, Automation and Information Sciences (ICCAIS).

[31]  Y. Bar-Shalom Tracking and data association , 1988 .

[32]  Ba-Ngu Vo,et al.  Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter , 2007, IEEE Transactions on Signal Processing.

[33]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[34]  Alireza Bab-Hadiashar,et al.  Multi-bernoulli sensor control for multi-target tracking , 2013, 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing.

[35]  Ba-Ngu Vo,et al.  Sensor control for multi-object state-space estimation using random finite sets , 2010, Autom..

[36]  L.Y. Pao,et al.  Tutorial on multisensor management and fusion algorithms for target tracking , 2004, Proceedings of the 2004 American Control Conference.

[37]  Ba-Ngu Vo,et al.  Generalized Labeled Multi-Bernoulli Approximation of Multi-Object Densities , 2014, IEEE Transactions on Signal Processing.

[38]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[39]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[40]  G. Crooks On Measures of Entropy and Information , 2015 .

[41]  Alfred O. Hero,et al.  Sensor Management: Past, Present, and Future , 2011, IEEE Sensors Journal.

[42]  Ronald P. S. Mahler,et al.  Global posterior densities for sensor management , 1998, Defense, Security, and Sensing.

[43]  Alireza Bab-Hadiashar,et al.  Multi-Bernoulli sensor control using Cauchy-Schwarz divergence , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[44]  Benlian Xu,et al.  Multi-sensor control for multi-object Bayes filters , 2018, Signal Process..

[45]  Mingwu Tu,et al.  Improving Bias Estimation Precision via a More Accuracy Radar Bias Model , 2018 .

[46]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[47]  Alireza Bab-Hadiashar,et al.  OSPA-based sensor control , 2015, 2015 International Conference on Control, Automation and Information Sciences (ICCAIS).

[48]  Ba-Ngu Vo,et al.  Sensor control for multi-target tracking using Cauchy-Schwarz divergence , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[49]  Ba-Ngu Vo,et al.  A Note on the Reward Function for PHD Filters with Sensor Control , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[50]  Eugene S. McVey,et al.  Multi-process constrained estimation , 1991, IEEE Trans. Syst. Man Cybern..

[51]  A. El-Fallah,et al.  Joint search and sensor management for geosynchronous satellites , 2008, SPIE Defense + Commercial Sensing.

[52]  Alireza Bab-Hadiashar,et al.  Multi-bernoulli sensor control via minimization of expected estimation errors , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[53]  K. Kastella,et al.  A Comparison of Task Driven and Information Driven Sensor Management for Target Tracking , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.