The semantic anatomical network: Evidence from healthy and brain‐damaged patient populations

Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM “nodes,” and correlating the integrity of each obtained WM edge and semantic performance across 80 brain‐damaged patients. Fifty‐three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing. Hum Brain Mapp 36:3499–3515, 2015. © 2015 Wiley Periodicals, Inc.

[1]  M. Seghier,et al.  Functional Subdivisions in the Left Angular Gyrus Where the Semantic System Meets and Diverges from the Default Network , 2010, The Journal of Neuroscience.

[2]  C. Ranganath,et al.  Two cortical systems for memory-guided behaviour , 2012, Nature Reviews Neuroscience.

[3]  Glyn W. Humphreys,et al.  BORB: Birmingham Object Recognition Battery , 2017 .

[4]  Alan C. Evans,et al.  Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. , 2009, Cerebral cortex.

[5]  W. K. Simmons,et al.  The Selectivity and Functional Connectivity of the Anterior Temporal Lobes , 2009, Cerebral cortex.

[6]  Huafu Chen,et al.  Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. , 2011, Brain : a journal of neurology.

[7]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[8]  Grant M. Walker,et al.  Anterior temporal involvement in semantic word retrieval: voxel-based lesion-symptom mapping evidence from aphasia. , 2009, Brain : a journal of neurology.

[9]  A. Caramazza,et al.  White matter structural connectivity underlying semantic processing: evidence from brain damaged patients. , 2013, Brain : a journal of neurology.

[10]  V. Menon,et al.  Saliency, switching, attention and control: a network model of insula function , 2010, Brain Structure and Function.

[11]  Massimo Filippi,et al.  Language networks in semantic dementia. , 2010, Brain : a journal of neurology.

[12]  Guy B. Williams,et al.  Atrophy, hypometabolism and white matter abnormalities in semantic dementia tell a coherent story. , 2011, Brain : a journal of neurology.

[13]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[14]  Nikos Makris,et al.  Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. , 2015, Cerebral cortex.

[15]  Stephen E. Rose,et al.  The structure and connectivity of semantic memory in the healthy older adult brain , 2011, NeuroImage.

[16]  J A Fiez,et al.  Lesion segmentation and manual warping to a reference brain: Intra‐ and interobserver reliability , 2000, Human brain mapping.

[17]  Volkmar Glauche,et al.  Ventral and dorsal pathways for language , 2008, Proceedings of the National Academy of Sciences.

[18]  L. Nadel,et al.  The role of medial temporal lobe in retrieving spatial and nonspatial relations from episodic and semantic memory , 2009, Hippocampus.

[19]  Richard S. J. Frackowiak,et al.  Functional anatomy of a common semantic system for words and pictures , 1996, Nature.

[20]  R. Turner,et al.  Language Control in the Bilingual Brain , 2006, Science.

[21]  B. Miller,et al.  Anterior temporal lobe degeneration produces widespread network-driven dysfunction. , 2013, Brain : a journal of neurology.

[22]  D. Poeppel,et al.  Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language , 2004, Cognition.

[23]  Nathalie Tzourio-Mazoyer,et al.  New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. , 2005, Brain : a journal of neurology.

[24]  Shannon Tubridy,et al.  Medial temporal lobe contributions to episodic sequence encoding. , 2011, Cerebral cortex.

[25]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Hugues Duffau,et al.  Cortico-subcortical organization of language networks in the right hemisphere: An electrostimulation study in left-handers , 2008, Neuropsychologia.

[27]  V. Calhoun,et al.  Neural hybrid model of semantic object memory: Implications from event-related timing using fMRI , 2003, Journal of the International Neuropsychological Society.

[28]  Andrew J. Saykin,et al.  Optimization of seed density in DTI tractography for structural networks , 2012, Journal of Neuroscience Methods.

[29]  B. Miller,et al.  Neurodegenerative Diseases Target Large-Scale Human Brain Networks , 2009, Neuron.

[30]  Karl J. Friston,et al.  Delineating Necessary and Sufficient Neural Systems with Functional Imaging Studies of Neuropsychological Patients , 1999, Journal of Cognitive Neuroscience.

[31]  Angela D Friederici,et al.  The language network , 2012, Current Opinion in Neurobiology.

[32]  Gail Tillman,et al.  Neural substrates of semantic memory , 2007, Journal of the International Neuropsychological Society.

[33]  Juan Alvarez-Linera,et al.  THREE‐DIMENSIONAL MICROSURGICAL AND TRACTOGRAPHIC ANATOMY OF THE WHITE MATTER OF THE HUMAN BRAIN , 2008, Neurosurgery.

[34]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[35]  D. Schnyer,et al.  A critical role for the anterior hippocampus in relational memory: Evidence from an fMRI study comparing associative and item recognition , 2004, Hippocampus.

[36]  Daniel Bub,et al.  On the Status of Object Concepts in Aphasia , 1997, Brain and Language.

[37]  Yong He,et al.  Graph theoretical modeling of brain connectivity. , 2010, Current opinion in neurology.

[38]  M. Kraut,et al.  Semantic memory deficit with a left thalamic infarct , 2003, Neurology.

[39]  R. Quiroga,et al.  Human single-neuron responses at the threshold of conscious recognition , 2008, Proceedings of the National Academy of Sciences.

[40]  H. Duffau,et al.  Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. , 2007, Brain : a journal of neurology.

[41]  A. Caramazza,et al.  Conceptual Object Representations in Human Anterior Temporal Cortex , 2012, The Journal of Neuroscience.

[42]  Sharon L. Thompson-Schill,et al.  Color, Context, and Cognitive Style: Variations in Color Knowledge Retrieval as a Function of Task and Subject Variables , 2011, Journal of Cognitive Neuroscience.

[43]  Michael T. Ullman,et al.  Is Broca's Area Part of a Basal Ganglia Thalamocortical Circuit? , 2006, Cortex.

[44]  H. Duffau The anatomo-functional connectivity of language revisited New insights provided by electrostimulation and tractography , 2008, Neuropsychologia.

[45]  R. Clark,et al.  The medial temporal lobe. , 2004, Annual review of neuroscience.

[46]  A. Turken,et al.  The Neural Architecture of the Language Comprehension Network: Converging Evidence from Lesion and Connectivity Analyses , 2011, Front. Syst. Neurosci..

[47]  Stefan Klöppel,et al.  Damage to ventral and dorsal language pathways in acute aphasia. , 2013 .

[48]  E. Mandonnet,et al.  Is the left uncinate fasciculus essential for language? , 2009, Journal of Neurology.

[49]  Mark D'Esposito,et al.  Subcortical aphasia , 1995, Neurology.

[50]  Pengfei Xu,et al.  PANDA: a pipeline toolbox for analyzing brain diffusion images , 2013, Front. Hum. Neurosci..

[51]  A. Thiel,et al.  The Right Inferior Frontal Gyrus and Poststroke Aphasia: A Follow-Up Investigation , 2007, Stroke.

[52]  F. Dick,et al.  Voxel-based lesion–symptom mapping , 2003, Nature Neuroscience.

[53]  Hugues Duffau,et al.  Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data , 2010, Cortex.

[54]  B. Mesquita,et al.  Adjustment to Chronic Diseases and Terminal Illness Health Psychology : Psychological Adjustment to Chronic Disease , 2006 .

[55]  Takashi Hanakawa,et al.  Involvement of insula and cingulate cortices in control and suppression of natural urges. , 2009, Cerebral cortex.

[56]  Karalyn Patterson,et al.  Taking both sides: do unilateral anterior temporal lobe lesions disrupt semantic memory? , 2010, Brain : a journal of neurology.

[57]  Ayse Aralasmak,et al.  Association, Commissural, and Projection Pathways and Their Functional Deficit Reported in Literature , 2006, Journal of computer assisted tomography.

[58]  B. Crosson Role of the dominant thalamus in language: a review. , 1984, Psychological bulletin.

[59]  Colin Humphries,et al.  Anatomy is strategy: Skilled reading differences associated with structural connectivity differences in the reading network , 2014, Brain and Language.

[60]  David E. Cox,et al.  Dynamic-intentional thalamic aphasia: a failure of lexical-semantic self-activation , 2011, Neurocase.

[61]  J. Desmond,et al.  Functional Specialization for Semantic and Phonological Processing in the Left Inferior Prefrontal Cortex , 1999, NeuroImage.

[62]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[63]  N. Dronkers,et al.  Lesion analysis of the brain areas involved in language comprehension , 2004, Cognition.

[64]  John Hart,et al.  Delineation of single‐word semantic comprehension deficits in aphasia, with anatomical correlation , 1990, Annals of neurology.

[65]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[66]  William W. Graves,et al.  Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. , 2009, Cerebral cortex.

[67]  A. Leemans,et al.  Hemispheric lateralization of topological organization in structural brain networks , 2014, Human brain mapping.

[68]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[69]  A. Caramazza,et al.  Predicting Conceptual Processing Capacity from Spontaneous Neuronal Activity of the Left Middle Temporal Gyrus , 2012, The Journal of Neuroscience.

[70]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[71]  Geoffrey A. Donnan,et al.  A Digital Map of Middle Cerebral Artery Infarcts Associated With Middle Cerebral Artery Trunk and Branch Occlusion , 2005, Stroke.

[72]  Matthew A. Lambon Ralph,et al.  Convergent Connectivity and Graded Specialization in the Rostral Human Temporal Lobe as Revealed by Diffusion-Weighted Imaging Probabilistic Tractography , 2012, Journal of Cognitive Neuroscience.

[73]  Vince D. Calhoun,et al.  Neural correlates of the object-recall process in semantic memory , 2006, Psychiatry Research: Neuroimaging.

[74]  Yong He,et al.  Imaging Functional and Structural Brain Connectomics in Attention-Deficit/Hyperactivity Disorder , 2014, Molecular Neurobiology.

[75]  Guy B. Williams,et al.  What the left and right anterior fusiform gyri tell us about semantic memory. , 2010, Brain : a journal of neurology.

[76]  Brigitte Landeau,et al.  Intrinsic Connectivity Identifies the Hippocampus as a Main Crossroad between Alzheimer’s and Semantic Dementia-Targeted Networks , 2014, Neuron.

[77]  Murray Grossman,et al.  Assessing Resource Demands during Sentence Processing in Parkinson's Disease , 2002, Brain and Language.

[78]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[79]  Alfonso Caramazza,et al.  Where color rests: Spontaneous brain activity of bilateral fusiform and lingual regions predicts object color knowledge performance , 2013, NeuroImage.

[80]  J. Rauschecker,et al.  Preserved Functional Specialization for Spatial Processing in the Middle Occipital Gyrus of the Early Blind , 2010, Neuron.

[81]  H. Duffau,et al.  Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle , 2011, Brain Structure and Function.

[82]  A. Thiel,et al.  Essential language function of the right hemisphere in brain tumor patients , 2005, Annals of neurology.

[83]  Guy B. Williams,et al.  Absolute diffusivities define the landscape of white matter degeneration in Alzheimer's disease. , 2010, Brain : a journal of neurology.

[84]  D. Paré,et al.  The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus , 2004, Progress in Neurobiology.

[85]  Hugues Duffau,et al.  Toward a pluri-component, multimodal, and dynamic organization of the ventral semantic stream in humans: lessons from stimulation mapping in awake patients , 2013, Front. Syst. Neurosci..

[86]  Alex Martin,et al.  Cortical Regions Associated with Perceiving, Naming, and Knowing about Colors , 1999, Journal of Cognitive Neuroscience.

[87]  K. Henke A model for memory systems based on processing modes rather than consciousness , 2010, Nature Reviews Neuroscience.

[88]  A. Damasio,et al.  A neural basis for the retrieval of conceptual knowledge , 1997, Neuropsychologia.

[89]  L. Squire,et al.  The medial temporal lobe and the attributes of memory , 2011, Trends in Cognitive Sciences.

[90]  Matthew A. Lambon Ralph,et al.  Neurocognitive insights on conceptual knowledge and its breakdown , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[91]  David Rudrauf,et al.  Thresholding lesion overlap difference maps: Application to category-related naming and recognition deficits , 2008, NeuroImage.

[92]  T. Rogers,et al.  Where do you know what you know? The representation of semantic knowledge in the human brain , 2007, Nature Reviews Neuroscience.

[93]  Manuel Lopes,et al.  Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. , 2002, Brain : a journal of neurology.

[94]  Bradford Z. Mahon,et al.  Concepts and categories: a cognitive neuropsychological perspective. , 2009, Annual review of psychology.

[95]  J. Hodges,et al.  Beyond the temporal pole: limbic memory circuit in the semantic variant of primary progressive aphasia. , 2014, Brain : a journal of neurology.

[96]  Rüdiger J. Seitz,et al.  A fronto-parietal circuit for tactile object discrimination: an event-related fMRI study , 2003, NeuroImage.

[97]  Alan C. Evans,et al.  Uncovering Intrinsic Modular Organization of Spontaneous Brain Activity in Humans , 2009, PloS one.

[98]  Yong He,et al.  BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics , 2013, PloS one.

[99]  Albert L. Rhoton,et al.  THREE‐DIMENSIONAL MICROSURGICAL AND TRACTOGRAPHIC ANATOMY OF THE WHITE MATTER OF THE HUMAN BRAIN , 2008 .

[100]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[101]  M. Catani,et al.  A diffusion tensor imaging tractography atlas for virtual in vivo dissections , 2008, Cortex.

[102]  Yong He,et al.  Diffusion Tensor Tractography Reveals Abnormal Topological Organization in Structural Cortical Networks in Alzheimer's Disease , 2010, The Journal of Neuroscience.

[103]  Geoff J M Parker,et al.  Distortion correction for diffusion‐weighted MRI tractography and fMRI in the temporal lobes , 2010, Human brain mapping.

[104]  M. L. Lambon Ralph,et al.  The Neural Organization of Semantic Control: TMS Evidence for a Distributed Network in Left Inferior Frontal and Posterior Middle Temporal Gyrus , 2010, Cerebral cortex.