Two different types of optical hybrid qubits for teleportation in a lossy environment

We investigate the performance of quantum teleportation under a lossy environment using two different types of optical hybrid qubits. One is the hybrid of a polarized single-photon qubit and a coherent-state qubit (type-I logical qubit), and the other is the hybrid of a qubit of the vacuum and the single-photon and a coherent-state qubit (type-II logical qubit). We show that type-II hybrid qubits are generally more robust to photon loss effects compared to type-I hybrid qubits with respect to fidelities and success probabilities of quantum teleportation.

[1]  N. Gisin,et al.  Displacement of entanglement back and forth between the micro and macro domains , 2012, Nature Physics.

[2]  M. S. Kim,et al.  Efficient quantum computation using coherent states , 2001, quant-ph/0109077.

[3]  Soonchil Lee,et al.  Fidelity of quantum teleportation through noisy channels , 2002 .

[4]  Peter van Loock,et al.  3/4-Efficient Bell measurement with passive linear optics and unentangled ancillae. , 2014, Physical review letters.

[5]  W. Louisell Quantum Statistical Properties of Radiation , 1973 .

[6]  U. Andersen,et al.  Heralded generation of a micro-macro entangled state , 2012, Physical Review A.

[7]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[8]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[9]  A. I. Lvovsky,et al.  Observation of micro–macro entanglement of light , 2013 .

[10]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[11]  Alexei Gilchrist,et al.  Fault tolerance in parity-state linear optical quantum computing , 2010 .

[12]  Julien Laurat,et al.  Remote creation of hybrid entanglement between particle-like and wave-like optical qubits , 2013, Nature Photonics.

[13]  O. Hirota,et al.  Entangled coherent states: Teleportation and decoherence , 2001 .

[14]  Philippe Grangier,et al.  Generation of optical ‘Schrödinger cats’ from photon number states , 2007, Nature.

[15]  Jinhyoung Lee,et al.  Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel , 2001, quant-ph/0104090.

[16]  T. Ralph,et al.  Nearly deterministic Bell measurement with multiphoton entanglement for efficient quantum-information processing , 2015, 1510.03142.

[17]  T. Ralph,et al.  Fault-tolerant linear optical quantum computing with small-amplitude coherent States. , 2007, Physical review letters.

[18]  Michael A. Nielsen,et al.  Noise thresholds for optical cluster-state quantum computation (26 pages) , 2006 .

[19]  Hyukjoon Kwon,et al.  Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state , 2014, 1410.6823.

[20]  Milburn,et al.  Effect of dissipation on quantum coherence. , 1985, Physical review. A, General physics.

[21]  Pavel Sekatski,et al.  Proposal for exploring macroscopic entanglement with a single photon and coherent states , 2012, 1206.1870.

[22]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[23]  Seung-Woo Lee,et al.  Generation of hybrid entanglement of light , 2014, Nature Photonics.

[24]  Hyunseok Jeong,et al.  Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation , 2005, quant-ph/0507095.

[25]  Seung-Woo Lee,et al.  Quantum teleportation between particlelike and fieldlike qubits using hybrid entanglement under decoherence effects , 2012 .

[26]  W. Grice Arbitrarily complete Bell-state measurement using only linear optical elements , 2011 .

[27]  Hyunseok Jeong,et al.  Violation of the Bell-Clauser-Horne-Shimony-Holt inequality using imperfect photodetectors with optical hybrid states , 2013, 1309.2033.

[28]  M. S. Kim,et al.  Purification of entangled coherent states , 2002, Quantum Inf. Comput..

[29]  Timothy C. Ralph,et al.  Optical quantum computation , 2011 .

[30]  Zhong-Xiao Man,et al.  Quantum teleportation in a dissipative environment , 2012, Quantum Inf. Process..

[31]  Francesco De Martini Amplification of Quantum Entanglement , 1998 .

[32]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[33]  Shuntaro Takeda,et al.  Deterministic quantum teleportation of photonic quantum bits by a hybrid technique , 2013, Nature.

[34]  N. Lütkenhaus,et al.  Maximum efficiency of a linear-optical Bell-state analyzer , 2001 .

[35]  Seung-Woo Lee,et al.  Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits , 2011, 1112.0825.

[36]  Phoenix,et al.  Wave-packet evolution in the damped oscillator. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[37]  Timothy C. Ralph,et al.  Nondeterministic gates for photonic single-rail quantum logic , 2002 .

[38]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[39]  Jeffrey H. Shapiro,et al.  Continuous-time cross-phase modulation and quantum computation , 2007 .

[40]  Peter van Loock,et al.  Beating the one-half limit of ancilla-free linear optics Bell measurements. , 2013, Physical review letters.

[41]  Chiara Vitelli,et al.  Entanglement test on a microscopic-macroscopic system. , 2008, Physical review letters.

[42]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[43]  Kae Nemoto,et al.  Weak nonlinearities: a new route to optical quantum computation , 2005, quant-ph/0507084.

[44]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[45]  Jaewan Kim,et al.  Quantum teleportation and Bell’s inequality using single-particle entanglement , 2000 .

[46]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[47]  C. Simon,et al.  Creating and detecting micro-macro photon-number entanglement by amplifying and deamplifying a single-photon entangled state. , 2012, Physical review letters.

[48]  Transfer of different types of optical qubits over a lossy environment , 2014, 1403.1042.

[49]  Yu-Bo Sheng,et al.  Hybrid entanglement purification for quantum repeaters , 2013 .

[50]  Seung-Woo Lee,et al.  Nearly deterministic bell measurement for multiphoton qubits and its application to quantum information processing. , 2015, Physical review letters.

[51]  Christopher C. Gerry,et al.  GENERATION OF OPTICAL MACROSCOPIC QUANTUM SUPERPOSITION STATES VIA STATE REDUCTION WITH A MACH-ZEHNDER INTERFEROMETER CONTAINING A KERR MEDIUM , 1999 .

[52]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.