Arithmetic multivariate Descartes' rule

<abstract abstract-type="TeX"><p>Let [inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="01i" /] be any number field or p-adic field and consider <i>F</i>:=(<i>f</i><sub xmlns:m="http://www.w3.org/1998/Math/MathML" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub>, . . . , <i>f<sub>k</sub></i>) where <i>f</i><sub xmlns:m="http://www.w3.org/1998/Math/MathML" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub>, . . . , <i>f<sub>k</sub></i> ∈ [inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="02i" /][<i>x</i><sub xmlns:m="http://www.w3.org/1998/Math/MathML" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub>, . . . , <i>x<sub>n</sub></i>] and no more than μ distinct exponent vectors occur in the monomial term expansions of the <i>f<sub>i</sub></i>. We prove that <i>F</i> has no more than 1 + (<i>C<sub>n</sub></i>(μ - <i>n</i>)<sup>3</sup> log (μ - <i>n</i>))<sup><i>n</i></sup> geometrically isolated roots in [inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="03i" /]<sup><i>n</i></sup>, where <i>C</i> is an explicit and effectively computable constant depending only on [inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="04i" /]. This gives a significantly sharper arithmetic analogue of Khovanski's Theorem on Real Fewnomials and a higher-dimensional generalization of an earlier result of Hendrik W. Lenstra, Jr. for the special case of a single univariate polynomial. We also present some further refinements of our new bounds and a higher-dimensional generalization of a bound of Lipshitz on <i>p</i>-adic complex roots. Connections to non-Archimedean amoebae and computational complexity (including additive complexity and solving for the geometrically isolated rational roots) are discussed along the way. We thus provide the foundations for an effective arithmetic analogue of fewnomial theory.

[1]  Costas S. Iliopoulos,et al.  Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix , 1989, SIAM J. Comput..

[2]  J. Maurice Rojas,et al.  Solving Degenerate Sparse Polynomial Systems Faster , 1998, J. Symb. Comput..

[3]  Martin E. Dyer,et al.  On the Complexity of Computing Mixed Volumes , 1998, SIAM J. Comput..

[4]  A. Levine,et al.  New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.

[5]  Wilberd van der Kallen,et al.  Complexity of the Havas, Majewski, Matthews LLL Hermite Normal Form Algorithm , 1998, J. Symb. Comput..

[6]  J. Maurice Rojas Some Speed-Ups and Speed Limits for Real Algebraic Geometry , 2000, J. Complex..

[7]  P. Mcmullen GEOMETRIC INEQUALITIES (Grundlehren der mathematischen Wissenschaften 285) , 1989 .

[8]  L. Lipshitz,et al.  p-adic zeros of polynomials. , 1988 .

[9]  H. Lenstra On the factorization of lacunary polynomials , 1999 .

[10]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[11]  J. Maurice Rojas,et al.  Counting Real Connected Components of Trinomial Curve Intersections and m-nomial Hypersurfaces , 2003, Discret. Comput. Geom..

[12]  Allan Borodin,et al.  On the Number of Additions to Compute Specific Polynomials , 1976, SIAM J. Comput..

[13]  Pascal Koiran Hilbert's Nullstellensatz Is in the Polynomial Hierarchy , 1996, J. Complex..

[14]  Michael Shub,et al.  Some Remarks on Bezout’s Theorem and Complexity Theory , 1993 .

[15]  H. Lenstra Finding small degree factors of lacunary polynomials , 1999 .

[16]  Jean-Jacques Risler,et al.  Additive Complexity and Zeros of Real Polynomials , 1985, SIAM J. Comput..

[17]  N. Koblitz p-adic Numbers, p-adic Analysis, and Zeta-Functions , 1977 .

[18]  J. Neukirch Algebraic Number Theory , 1999 .

[19]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[20]  G. Ziegler Lectures on Polytopes , 1994 .

[21]  N. Jacobson,et al.  Basic Algebra I , 1976 .

[22]  J. M. Rojas Algebraic Geometry Over Four Rings and the Frontier to Tractability , 2000, math/0005204.

[24]  Finiteness for Arithmetic Fewnomial Systems , 2000, math/0010260.

[25]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[26]  J. Maurice Rojas Computational Arithmetic Geometry I. Sentences Nearly in the Polynomial Hierarchy , 2001, J. Comput. Syst. Sci..

[27]  Jan Denef,et al.  P-adic and real subanalytic sets , 1988 .

[28]  J. Maurice Rojas,et al.  Toric intersection theory for affine root counting , 1996, math/9606215.