Efficient Micro-Lasers Based on Highly Doped Monoclinic Double Tungstates
暂无分享,去创建一个
Xavier Mateos | Valentin Petrov | Uwe Griebner | Josep Maria Serres | Konstantin Yumashev | Magdalena Aguiló | Francesc Díaz | Pavel Loiko | U. Griebner | V. Petrov | X. Mateos | P. Loiko | M. Aguiló | F. Díaz | J. M. Serres | K. Yumashev
[1] M. Tonelli,et al. Efficient, diode-pumped Tm(3)+:BaY(2)F(8) vibronic laser. , 2004, Optics express.
[2] Xavier Mateos,et al. Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host , 2007 .
[3] M. Tonelli,et al. Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser , 2004 .
[4] Tetsuro Izumitani,et al. Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+ , 1995 .
[5] Wilson Sibbett,et al. Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal , 2009 .
[6] U. Griebner,et al. Continuous-wave co-lasing in a monoclinic co-doped (Ho,Tm):KLu(WO4)2 crystal , 2011 .
[7] Patrick Georges,et al. On thermal effects in solid state lasers: the case of ytterbium-doped materials , 2006 .
[8] Hideki Yagi,et al. Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers. , 2007, Optics express.
[9] Horst Weber,et al. Optical Resonators: Fundamentals, Advanced Concepts and Applications , 1997 .
[10] J. J. Zayhowski. Microchip lasers , 1997, CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics.
[11] V. N. Burakevich,et al. Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser. , 2005, Optics letters.
[12] U. Griebner,et al. Diode-pumped 2 μm vibronic (Tm3+, Yb3+):KLu(WO4)2 laser. , 2012, Applied optics.
[13] Xavier Mateos,et al. Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes , 2016 .
[14] T. Südmeyer,et al. Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power. , 2014, Optics express.
[15] J. Gavaldà,et al. Structural study of monoclinic KGd(WO4)2 and effects of lanthanide substitution , 2001 .
[16] J. Zayhowski,et al. Tm:YVO(4) microchip laser. , 1995, Applied optics.
[17] Xavier Mateos,et al. Prospects of monoclinic Yb:KLu(WO 4 ) 2 crystal for multi-watt microchip lasers , 2015 .
[18] U. Griebner,et al. Growth, optical characterization, and laser operation of a stoichiometric crystal KYb(WO 4 ) 2 , 2002 .
[19] M. Mond,et al. Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm , 2002 .
[20] Xavier Mateos,et al. In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency. , 2015, Optics letters.
[21] Xavier Mateos,et al. Temperature-dependent spectroscopy and microchip laser operation of Nd:KGd(WO4)2 , 2016 .
[22] E. Chicklis,et al. High-power/high-brightness diode-pumped 1.9-/spl mu/m thulium and resonantly pumped 2.1-/spl mu/m holmium lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.
[23] U. Griebner,et al. Sub-nanosecond Yb:KLu(WO4)2 microchip laser. , 2016, Optics letters.
[24] Amin Abdolvand,et al. Conical refraction Nd:KGd(WO4)2 laser. , 2010, Optics express.
[25] Patrick Georges,et al. Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser , 2006, physics/0609255.
[26] Xavier Mateos,et al. Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies. , 2012, Optics letters.
[27] P. Loiko,et al. Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal , 2012 .
[28] Xavier Mateos,et al. Diode-pumped microchip Tm:KLu(WO₄)₂ laser with more than 3 W of output power. , 2014, Optics letters.
[29] Xavier Mateos,et al. Crystal growth, spectroscopic studies and laser operation of Yb3+-doped potassium lutetium tungstate , 2006 .
[30] J. Zayhowski,et al. Diode-pumped passively Q-switched picosecond microchip lasers. , 1994, Optics letters.
[31] U. Griebner,et al. Q-switching of a Tm,Ho:KLu(WO4)2 microchip laser by a graphene-based saturable absorber , 2016 .
[32] Xavier Mateos,et al. Comparative spectroscopic and thermo-optic study of Tm:LiLnF_4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at 2 μm , 2017 .
[33] U. Griebner,et al. Microchip laser operation of Tm,Ho:KLu(WO₄)₂ crystal. , 2014, Optics express.
[34] X. Mateos,et al. Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals , 2014 .
[35] T. Sudmeyer,et al. Passively $Q$ -Switched Thulium Microchip Laser , 2016, IEEE Photonics Technology Letters.
[36] Markus Pollnau,et al. Stochastic Model of Energy-Transfer Processes Among Rare-Earth Ions. Example of Al2O3:Tm3+ , 2016 .
[37] T. Y. Fan,et al. Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG , 1988 .
[38] Steven R Bowman,et al. Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate. , 2005, Applied optics.
[39] Lloyd L. Chase,et al. Quantum electronic properties of the Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/ laser , 1988 .
[40] K. Ueda,et al. Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser , 2006 .
[41] Xavier Mateos,et al. Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber. , 2015, Optics letters.
[42] S. Li,et al. Thermal lensing in an end-pumped Yb:KGW slab laser with high power single emitter diodes. , 2008, Optics express.
[43] Edward H. Bernhardi,et al. Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers , 2009 .
[44] Lili Hu,et al. Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses , 2010 .
[45] Konstantin V. Yumashev,et al. Anisotropy of the photo-elastic effect in Nd : KGd(WO4)2 laser crystals , 2014 .
[46] Xavier Mateos,et al. Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes. , 2007, Optics letters.
[47] Fi Cristal. Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy , 2007 .
[48] U. Griebner,et al. Spectroscopic and laser characterization of Yb,Tm:KLu(WO4)2 crystal , 2016 .
[49] M. Pollnau,et al. Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency. , 2014, Optics letters.
[50] David W. Coutts,et al. Scaling Q-switched microchip lasers for shortest pulses , 2012 .