Efficient Micro-Lasers Based on Highly Doped Monoclinic Double Tungstates

We demonstrate the suitability of monoclinic double tungstates (MDTs), KRE(WO<sub>4</sub>)<sub>2</sub>, where RE = Gd, Y or Lu, doped with Nd<sup>3+</sup>, Yb<sup>3+</sup>, Tm<sup>3+</sup>, or Ho<sup>3+</sup> ions and co-doped with Yb<sup>3+</sup>-Tm<sup>3+</sup>, or Tm<sup>3+</sup>-Ho<sup>3+</sup> ion couples, for highly efficient micro-lasers at <inline-formula> <tex-math notation="LaTeX">$\sim 1~\mu \text{m}$ </tex-math></inline-formula> and at <inline-formula> <tex-math notation="LaTeX">$\sim 2~\mu \text{m}$ </tex-math></inline-formula>. This is facilitated by the use of high rare-earth doping levels (up to 15 at.% for Tm, 10 at.% for Nd, and 25 at.% for Yb) and a special crystal cut along the <inline-formula> <tex-math notation="LaTeX">$\text{N}_{\mathrm {g}}$ </tex-math></inline-formula>-axis providing the thermal guiding. Record slope efficiencies for bulk MDT lasers are achieved for each studied ion. A 15 at.% Tm:KLu(WO<sub>4</sub>)<sub>2</sub> laser generated 785 mW at 1957<inline-formula> <tex-math notation="LaTeX">$\ldots$ </tex-math></inline-formula>1965 nm with a slope efficiency <inline-formula> <tex-math notation="LaTeX">$\eta =77$ </tex-math></inline-formula>%. The quantum efficiency for Tm<sup>3+</sup> ions amounted to <inline-formula> <tex-math notation="LaTeX">$\eta _{\mathrm {q}} = 1.98\pm 0.02$ </tex-math></inline-formula>. With a 0.9 mm-thick 25 at.% Yb:KLuW micro-laser, <inline-formula> <tex-math notation="LaTeX">$\eta =91$ </tex-math></inline-formula>% is achieved, approaching the theoretical limit set by the Stokes shift.

[1]  M. Tonelli,et al.  Efficient, diode-pumped Tm(3)+:BaY(2)F(8) vibronic laser. , 2004, Optics express.

[2]  Xavier Mateos,et al.  Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host , 2007 .

[3]  M. Tonelli,et al.  Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser , 2004 .

[4]  Tetsuro Izumitani,et al.  Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+ , 1995 .

[5]  Wilson Sibbett,et al.  Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal , 2009 .

[6]  U. Griebner,et al.  Continuous-wave co-lasing in a monoclinic co-doped (Ho,Tm):KLu(WO4)2 crystal , 2011 .

[7]  Patrick Georges,et al.  On thermal effects in solid state lasers: the case of ytterbium-doped materials , 2006 .

[8]  Hideki Yagi,et al.  Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers. , 2007, Optics express.

[9]  Horst Weber,et al.  Optical Resonators: Fundamentals, Advanced Concepts and Applications , 1997 .

[10]  J. J. Zayhowski Microchip lasers , 1997, CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics.

[11]  V. N. Burakevich,et al.  Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser. , 2005, Optics letters.

[12]  U. Griebner,et al.  Diode-pumped 2 μm vibronic (Tm3+, Yb3+):KLu(WO4)2 laser. , 2012, Applied optics.

[13]  Xavier Mateos,et al.  Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes , 2016 .

[14]  T. Südmeyer,et al.  Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power. , 2014, Optics express.

[15]  J. Gavaldà,et al.  Structural study of monoclinic KGd(WO4)2 and effects of lanthanide substitution , 2001 .

[16]  J. Zayhowski,et al.  Tm:YVO(4) microchip laser. , 1995, Applied optics.

[17]  Xavier Mateos,et al.  Prospects of monoclinic Yb:KLu(WO 4 ) 2 crystal for multi-watt microchip lasers , 2015 .

[18]  U. Griebner,et al.  Growth, optical characterization, and laser operation of a stoichiometric crystal KYb(WO 4 ) 2 , 2002 .

[19]  M. Mond,et al.  Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm , 2002 .

[20]  Xavier Mateos,et al.  In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency. , 2015, Optics letters.

[21]  Xavier Mateos,et al.  Temperature-dependent spectroscopy and microchip laser operation of Nd:KGd(WO4)2 , 2016 .

[22]  E. Chicklis,et al.  High-power/high-brightness diode-pumped 1.9-/spl mu/m thulium and resonantly pumped 2.1-/spl mu/m holmium lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  U. Griebner,et al.  Sub-nanosecond Yb:KLu(WO4)2 microchip laser. , 2016, Optics letters.

[24]  Amin Abdolvand,et al.  Conical refraction Nd:KGd(WO4)2 laser. , 2010, Optics express.

[25]  Patrick Georges,et al.  Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser , 2006, physics/0609255.

[26]  Xavier Mateos,et al.  Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies. , 2012, Optics letters.

[27]  P. Loiko,et al.  Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal , 2012 .

[28]  Xavier Mateos,et al.  Diode-pumped microchip Tm:KLu(WO₄)₂ laser with more than 3 W of output power. , 2014, Optics letters.

[29]  Xavier Mateos,et al.  Crystal growth, spectroscopic studies and laser operation of Yb3+-doped potassium lutetium tungstate , 2006 .

[30]  J. Zayhowski,et al.  Diode-pumped passively Q-switched picosecond microchip lasers. , 1994, Optics letters.

[31]  U. Griebner,et al.  Q-switching of a Tm,Ho:KLu(WO4)2 microchip laser by a graphene-based saturable absorber , 2016 .

[32]  Xavier Mateos,et al.  Comparative spectroscopic and thermo-optic study of Tm:LiLnF_4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at 2 μm , 2017 .

[33]  U. Griebner,et al.  Microchip laser operation of Tm,Ho:KLu(WO₄)₂ crystal. , 2014, Optics express.

[34]  X. Mateos,et al.  Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals , 2014 .

[35]  T. Sudmeyer,et al.  Passively $Q$ -Switched Thulium Microchip Laser , 2016, IEEE Photonics Technology Letters.

[36]  Markus Pollnau,et al.  Stochastic Model of Energy-Transfer Processes Among Rare-Earth Ions. Example of Al2O3:Tm3+ , 2016 .

[37]  T. Y. Fan,et al.  Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG , 1988 .

[38]  Steven R Bowman,et al.  Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate. , 2005, Applied optics.

[39]  Lloyd L. Chase,et al.  Quantum electronic properties of the Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/ laser , 1988 .

[40]  K. Ueda,et al.  Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser , 2006 .

[41]  Xavier Mateos,et al.  Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber. , 2015, Optics letters.

[42]  S. Li,et al.  Thermal lensing in an end-pumped Yb:KGW slab laser with high power single emitter diodes. , 2008, Optics express.

[43]  Edward H. Bernhardi,et al.  Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers , 2009 .

[44]  Lili Hu,et al.  Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses , 2010 .

[45]  Konstantin V. Yumashev,et al.  Anisotropy of the photo-elastic effect in Nd : KGd(WO4)2 laser crystals , 2014 .

[46]  Xavier Mateos,et al.  Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes. , 2007, Optics letters.

[47]  Fi Cristal Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy , 2007 .

[48]  U. Griebner,et al.  Spectroscopic and laser characterization of Yb,Tm:KLu(WO4)2 crystal , 2016 .

[49]  M. Pollnau,et al.  Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency. , 2014, Optics letters.

[50]  David W. Coutts,et al.  Scaling Q-switched microchip lasers for shortest pulses , 2012 .