Disruptive effect of Dzyaloshinskii-Moriya interaction on the magnetic memory cell performance

In order to increase the thermal stability of a magnetic random access memory cell, materials with high spin-orbit interaction are often introduced in the storage layer. As a side effect, a strong Dzyaloshinskii-Moriya interaction (DMI) may arise in such systems. Here, we investigate the impact of DMI on the magnetic cell performance, using micromagnetic simulations. We find that DMI strongly promotes non-uniform magnetization states and non-uniform switching modes of the magnetic layer. It appears to be detrimental for both the thermal stability of the cell and its switching current, leading to considerable deterioration of the cell performance even for a moderate DMI amplitude.

[1]  A. Fert,et al.  Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. , 2016, Nature nanotechnology.

[2]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[3]  A. Fert,et al.  Breathing modes of confined skyrmions in ultrathin magnetic dots , 2014, 1405.7414.

[4]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[5]  Ronald B. Goldfarb,et al.  Demagnetizing factors for cylinders , 1991 .

[6]  L. Buda-Prejbeanu,et al.  Chirality-Induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures. , 2014, Physical review letters.

[7]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[8]  C. Marrows,et al.  Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films , 2014 .

[9]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[10]  Shoji Ikeda,et al.  Three terminal magnetic tunnel junction utilizing the spin Hall effect of iridium-doped copper , 2013 .

[11]  M. Gajek,et al.  Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy , 2012 .

[12]  H. Ohno,et al.  Co/Pt multilayer-based magnetic tunnel junctions with a CoFeB/Ta insertion layer , 2014 .

[13]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[14]  J. H. Franken,et al.  Tunable chiral spin texture in magnetic domain-walls , 2014, Scientific Reports.

[15]  M. A. Escobar,et al.  Thermal stability of patterned Co/Pd nanodot arrays , 2012 .

[16]  Werner Scholz,et al.  A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems , 2002 .

[17]  Ik Sun Hong,et al.  Detrimental Effect of Interfacial Dzyaloshinskii-Moriya Interaction on Perpendicular Spin-Transfer-Torque Magnetic Random Access Memory , 2016, 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS).

[18]  Hyun-Woo Lee,et al.  Spin Hall torque magnetometry of Dzyaloshinskii domain walls , 2013, 1308.1432.

[19]  Mohamad Towfik Krounbi,et al.  Basic principles of STT-MRAM cell operation in memory arrays , 2013 .

[20]  S. Yuasa,et al.  Ultrathin Co/Pt and Co/Pd superlattice films for MgO-based perpendicular magnetic tunnel junctions , 2010 .

[21]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[22]  Jonathan Z. Sun Spin-current interaction with a monodomain magnetic body: A model study , 2000 .

[23]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[24]  H. Ohno,et al.  Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure , 2012 .

[25]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[26]  Boris Livshitz,et al.  FastMag: Fast micromagnetic simulator for complex magnetic structures , 2011 .

[27]  S. Parkin,et al.  Chiral spin torque arising from proximity-induced magnetization , 2014, Nature Communications.

[28]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[29]  S. Rohart,et al.  Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction , 2013, 1310.0666.