Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions

An initial-boundary value problem with a Caputo time derivative of fractional order $\alpha\in(0,1)$ is considered, solutions of which typically exhibit a singular behaviour at an initial time. For this problem, we give a simple framework for the analysis of the error of L1-type discretizations on graded and uniform temporal meshes in the $L_\infty$ and $L_2$ norms. This framework is employed in the analysis of both finite difference and finite element spatial discretiztions. Our theoretical findings are illustrated by numerical experiments.

[1]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[2]  A. H. Schatz,et al.  A weak discrete maximum principle and stability of the finite element method in _{∞} on plane polygonal domains. I , 1980 .

[3]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[4]  Ricardo H. Nochetto,et al.  A PDE Approach to Space-Time Fractional Parabolic Problems , 2014, SIAM J. Numer. Anal..

[5]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[6]  Bangti Jin,et al.  An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.

[7]  Martin Stynes,et al.  Too much regularity may force too much uniqueness , 2016, 1607.01955.

[8]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[9]  Martin Stynes,et al.  Convergence in Positive Time for a Finite Difference Method Applied to a Fractional Convection-Diffusion Problem , 2017, Comput. Methods Appl. Math..

[10]  J. Rossmann,et al.  Elliptic Equations in Polyhedral Domains , 2010 .

[11]  J. Rossmann,et al.  Elliptic Equations in Polyhedral Domains , 2010 .

[12]  Bangti Jin,et al.  An Analysis of Galerkin Proper Orthogonal Decomposition for Subdiffusion , 2015 .

[13]  Bangti Jin,et al.  On nonnegativity preservation in finite element methods for subdiffusion equations , 2015, Math. Comput..

[14]  Boris Vexler,et al.  Finite Element Pointwise Results on Convex Polyhedral Domains , 2016, SIAM J. Numer. Anal..

[15]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[16]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[17]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[18]  Kassem Mustapha,et al.  Optimal Error Analysis of a FEM for Fractional Diffusion Problems by Energy Arguments , 2018, J. Sci. Comput..

[19]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[20]  W. McLean Regularity of solutions to a time-fractional diffusion equation , 2010 .

[21]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[22]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[23]  Bangti Jin,et al.  Two Fully Discrete Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data , 2016, SIAM J. Sci. Comput..

[24]  A. H. Schatz,et al.  On the Quasi-Optimality in $L_\infty$ of the $\overset{\circ}{H}^1$-Projection into Finite Element Spaces* , 1982 .