Number Determiners, Numbers, and Arithmetic

and both of these statements seem to be identity statements, ones with which we claim that what two singular terms stand for is identical. But that number words can occur both as singular terms and as adjectives is puzzling. Usually adjectives cannot occur in a position occupied by a singular term, and the other way round, without resulting in ungrammaticality and nonsense. To give just one example, it would be ungrammatical to replace ‘four’ with ‘the number of moons of Jupiter’ in (1):

[1]  P. Culicover,et al.  English Focus Constructions and the Theory of Grammar , 1990 .

[2]  L. T. F. Gamut Logic, language, and meaning , 1991 .

[3]  J. Fodor,et al.  Psychosemantics: The Problem of Meaning in the Philosophy of Mind , 1988 .

[4]  J. E. Tiles,et al.  Frege's Conception of Numbers as Objects , 1984 .

[5]  Michael Dummett,et al.  Frege: Philosophy of Mathematics. , 1993 .

[6]  J.F.A.K. van Benthem,et al.  Language in Action: Categories, Lambdas and Dynamic Logic , 1997 .

[7]  Nathan Salmón Frege's Puzzle , 1986 .

[8]  Harold T. Hodes Logicism and the Ontological Commitments of Arithmetic , 1984 .

[9]  J. Hintikka On denoting what? , 2005, Synthese.

[10]  A. Mostowski On a generalization of quantifiers , 1957 .

[11]  Thomas Hofweber Inexpressible Properties and Propositions , 2003 .

[12]  Jaap M. van der Does Sums and quantifiers , 1993 .

[13]  R. Carnap Empiricism , Semantics , and Ontology , 2007 .

[14]  Richard Montague,et al.  The Proper Treatment of Quantification in Ordinary English , 1973 .

[15]  G. Frege Die Grundlagen der Arithmetik : eine logisch mathematische Untersuchung über den Begriff der Zahl , 1884 .

[16]  Vann McGee,et al.  Logical operations , 1996, J. Philos. Log..

[17]  Gottlob Frege,et al.  The Foundations of Arithmetic , 2017 .

[18]  Johan van Benthem,et al.  Logical Constants Across Varying Types , 1989, Notre Dame J. Formal Log..

[19]  Harold T. Hodes Where do the natural numbers come from? , 1990, Synthese.

[20]  Lieven Verschaffel,et al.  Number and Arithmetic , 1996 .

[21]  Thomas Hofweber Proof-Theoretic Reduction As A Philosopher's Tool , 2000 .

[22]  Dag Westerståhl,et al.  Generalized Quantifiers in Linguistics and Logic , 1997, Handbook of Logic and Language.

[23]  Jerry P. Becker,et al.  Elementary School Practices , 1996 .

[24]  Bob Hale,et al.  The Reason's Proper Study , 2001 .

[25]  Crispin Wright Frege's conception of numbers as objects , 1983 .

[26]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .

[27]  J. Barwise,et al.  Generalized quantifiers and natural language , 1981 .