The halteres of the blowfly Calliphora

We quantitatively analysed compensatory head reactions of flies to imposed body rotations in yaw, pitch and roll and characterized the haltere as a sense organ for maintaining equilibrium. During constant velocity rotation, the head first moves to compensate retinal slip and then attains a plateau excursion (Fig. 3). Below 500°/s, initial head velocity as well as final excursion depend linearily on stimulus velocities for all three axes. Head saccades occur rarely and are synchronous to wing beat saccades (Fig. 5). They are interpreted as spontaneous actions superposed to the compensatory reaction and are thus not resetting movements like the fast phase of ‘vestibulo-ocular’ nystagmus in vertebrates. In addition to subjecting the flies to actual body rotations we developed a method to mimick rotational stimuli by subjecting the body of a flying fly to vibrations (1 to 200 μm, 130 to 150 Hz), which were coupled on line to the fly's haltere beat. The reactions to simulated Coriolis forces, mimicking a rotation with constant velocity, are qualitatively and to a large extent also quantitatively identical to the reactions to real rotations (Figs. 3, 7–9). Responses to roll- and pitch stimuli are co-axial. During yaw stimulation (halteres and visual) the head performs both a yaw and a roll reaction (Fig. 3e,f), thus reacting not co-axial. This is not due to mechanical constraints of the neck articulation, but rather it is interpreted as an ‘advance compensation’ of a banked body position during free flight yaw turns (Fig. 10).

[1]  G. Fraenkel,et al.  Biological Sciences: Halteres of Flies as Gyroscopic Organs of Equilibrium , 1938, Nature.

[2]  F. Hollick The flight of the dipterous fly Muscina stabulans Fallén , 1940, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[3]  Erich v. Holst,et al.  Biologische und aerodynamische Probleme des Tierfluges , 1941 .

[4]  J. Pringle The gyroscopic mechanism of the halteres of Diptera , 1948, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[5]  J. Pringle,et al.  Comparative Physiology of the Flight Motor , 1968 .

[6]  H. Collewijn,et al.  OCULOMOTOR REACTIONS IN THE CUTTLEFISH, SEPIA OFFICINALIS , 1970 .

[7]  J. Camhi YAW-CORRECTING POSTURAL CHANGES IN LOCUSTS* , 1970 .

[8]  P. Shepheard Control of head movement in the locust, Schistocerca gregaria. , 1974, The Journal of experimental biology.

[9]  G. Horridge The Compound eye and vision of insects , 1975 .

[10]  R. Carpenter,et al.  Movements of the Eyes , 1978 .

[11]  Michael F. Land,et al.  The fast phase of optokinetic nystagmus in the locust , 1978 .

[12]  H. Markl,et al.  Head Movements in Flies ( Calliphora ) Produced by Deflexion of the Halteres , 1980 .

[13]  J. Blondeau Aerodynamic Capabilities of Flies, as Revealed by a New Technique , 1981 .

[14]  Douglas M. Neil,et al.  Optokinetic Responses, Visual Adaptation and Multisensory Control of Eye Movements in the Spiny Lobster, Palinurus Vulgaris , 1983 .

[15]  Roland Hengstenberg,et al.  Roll-Stabilization During Flight of the Blowfly’s Head and Body by Mechanical and Visual Cues , 1984 .

[16]  M. Heisenberg,et al.  Vision in Drosophila , 1984 .

[17]  H. Wagner Flight Performance and Visual Control of Flight of the Free-Flying Housefly (Musca Domestica L.) I. Organization of the Flight Motor , 1986 .

[18]  Die Halteren von Calliphora als Drehsinnesorgan , 1986 .

[19]  H. Wagner Flight Performance and Visual Control of Flight of the Free-Flying Housefly (Musca Domestica L.) III. Interactions Between Angular Movement Induced by Wide- and Smallfield Stimuli , 1986 .

[20]  H. Wagner Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) II. Pursuit of targets , 1986 .

[21]  R. Hengstenberg,et al.  Compensatory head roll in the blowfly Calliphora during flight , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[22]  Linear oscillations elicit haltere mediated turning illusions and entrainment in the blowfly Calliphora , 1988 .

[23]  J. Zanker,et al.  On the mechanism of speed and altitude control in Drosophila melanogaster , 1988 .

[24]  A. R. Ennos The kinematics and aerodynamics of the free flight of some diptera , 1989 .

[25]  J. Zanker The wing beat of Drosophila Melanogaster. III. Control , 1990 .

[26]  Hans-Ortwin Nalbach Multisensory control of eyestalk orientation in decapod crustaceans : an ecological approach , 1990 .

[27]  Roland Hengstenberg,et al.  Gaze control in the blowfly Calliphora: a multisensory, two-stage integration process , 1991 .

[28]  The halteres of Calliphora: a measuring system with non-orthogonal axes , 1991 .

[29]  D. Robert,et al.  I. Head movements and the organization of correctional manoeuvres , 1992 .

[30]  T Haslwanter,et al.  Three‐Dimensional Transformations from Vestibular and Visual Input to Oculomotor Output a , 1992, Annals of the New York Academy of Sciences.

[31]  G. Nalbach,et al.  Extremely non-orthogonal axes in a sense organ for rotation: Behavioural analysis of the dipteran haltere system , 1994, Neuroscience.

[32]  H. P. Zeigier,et al.  Vision, brain, and behavior in birds. , 1994 .

[33]  On the visually evoked head nystagmus of Tenebrio molitor and other beetles , 1981, Biological Cybernetics.

[34]  Johannes M. Zanker,et al.  On the coordination of motor output during visual flight control of flies , 1991, Journal of Comparative Physiology A.

[35]  G. Nalbach,et al.  Visual control of eye-stalk orientation in crabs: vertical optokinetics, visual fixation of the horizon, and eye design , 1989, Journal of Comparative Physiology A.

[36]  G. Schneider Die Halteren der Schmeissfliege (Calliphora) als Sinnesorgane und als mechanische Flugstabilisatoren , 1953, Zeitschrift für vergleichende Physiologie.

[37]  T. Poggio,et al.  On head and body movements of flying flies , 1977, Biological Cybernetics.

[38]  Roland Hengstenberg,et al.  Structure and kinematics of the prosternal organs and their influence on head position in the blowfly Calliphora erythrocephala Meig. , 1992, Journal of Comparative Physiology A.

[39]  Eberhard Horn,et al.  On the invariance of visual stimulus efficacy with respect to variable spatial positions , 1984, Journal of Comparative Physiology A.

[40]  Samuel Rossel,et al.  Foveal fixation and tracking in the praying mantis , 1980, Journal of comparative physiology.

[41]  Michael Gewecke,et al.  Die Wirkung von Luftströmung auf die Antennen und das Flugverhalten der blauen Schmeissfliege (Calliphora Erythrocephala) , 2004, Zeitschrift für vergleichende Physiologie.

[42]  R. Hengstenberg Mechanosensory control of compensatory head roll during flight in the blowflyCalliphora erythrocephala Meig. , 1988, Journal of Comparative Physiology A.

[43]  D. Sandeman,et al.  Angular acceleration, compensatory head movements and the halteres of flies (Lucilia serricata) , 1980, Journal of comparative physiology.

[44]  Karl Georg Götz,et al.  Optomotor control of wing beat and body posture in drosophila , 1979, Biological Cybernetics.

[45]  R. Hengstenberg,et al.  Das augenmuskelsystem der stubenfliege musca domestica , 1971, Kybernetik.

[46]  G. Nalbach The halteres of the blowfly Calliphora , 1993, Journal of Comparative Physiology A.

[47]  H. Mittelstaedt,et al.  Physiologie des Gleichgewichtssinnes bei fliegenden Libellen , 1950, Zeitschrift für vergleichende Physiologie.

[48]  Erich v. Holst,et al.  Biologische und aerodynamische Probleme des Tierfluges , 2005, Naturwissenschaften.

[49]  J. Zanker How does lateral abdomen deflection contribute to flight control ofDrosophila melanogaster? , 1988, Journal of Comparative Physiology A.

[50]  R. Demoll,et al.  Der Flug der Insekten und der Vögel , 1919, Naturwissenschaften.

[51]  J. Zeil,et al.  Strepsipteran forewings are haltere-like organs of equilibrium , 1993, Naturwissenschaften.

[52]  D. Tracey Head movements mediated by halteres in the fly,Musca domestica , 1975, Experientia.