Average complexity of Moore's and Hopcroft's algorithms

In this paper we prove that for the uniform distribution on complete deterministic automata, the average time complexity of Moore's state minimization algorithm is O(nloglogn), where n is the number of states in the input automata and the number of letters in the alphabet is fixed. Then, an unusual family of implementations of Hopcroft's algorithm is characterized, for which the algorithm will be proved to be always faster than Moore's algorithm. Finally, we present experimental results on the usual implementations of Hopcroft's algorithm.

[1]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[2]  David Gries,et al.  Describing an algorithm by Hopcroft , 1973, Acta Informatica.

[3]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[4]  Frédérique Bassino,et al.  Enumeration and random generation of accessible automata , 2007, Theor. Comput. Sci..

[5]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[6]  Antti Valmari,et al.  Efficient Minimization of DFAs with Partial Transition , 2008, STACS.

[7]  Maxime Crochemore,et al.  Minimizing incomplete automata , 2008, FSMNLP 2008.

[8]  Frédérique Bassino,et al.  : A Library to Randomly and Exhaustively Generate Automata , 2007, CIAA.

[9]  Dominique Revuz,et al.  Minimisation of Acyclic Deterministic Automata in Linear Time , 1992, Theor. Comput. Sci..

[10]  W. Szpankowski Average Case Analysis of Algorithms on Sequences , 2001 .

[11]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[12]  Jean-Marc Champarnaud,et al.  Brzozowski's Derivatives Extended to Multiplicities , 2001, CIAA.

[13]  Olivier Carton,et al.  On the Complexity of Hopcroft's State Minimization Algorithm , 2004, CIAA.

[14]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[15]  Maxime Crochemore,et al.  Minimizing local automata , 2007, 2007 IEEE International Symposium on Information Theory.

[16]  Frédérique Bassino,et al.  On the Average Complexity of Moore's State Minimization Algorithm , 2009, STACS.

[17]  J. Brzozowski Canonical regular expressions and minimal state graphs for definite events , 1962 .

[18]  Claire Pagetti,et al.  Around Hopcroft's Algorithm , 2006, CIAA.

[19]  A. Nerode,et al.  Linear automaton transformations , 1958 .

[20]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[21]  Max Crochemore,et al.  Finite-State Methods and Natural Language Processing , 2008 .

[22]  Ilya Kapovich,et al.  Generic-case complexity, decision problems in group theory and random walks , 2002, ArXiv.

[23]  Antonio Restivo,et al.  Hopcroft's Algorithm and Cyclic Automata , 2008, LATA.

[24]  Antonio Restivo,et al.  On Extremal Cases of Hopcroft's Algorithm , 2009, CIAA.

[25]  Antonio Restivo,et al.  On extremal cases of Hopcroft's algorithm , 2010, Theor. Comput. Sci..

[26]  Cyril Nicaud,et al.  Average State Complexity of Operations on Unary Automata , 1999, MFCS.

[27]  Olivier Carton,et al.  Continuant polynomials and worst-case behavior of Hopcroft's minimization algorithm , 2009, Theor. Comput. Sci..

[28]  Timo Knuutila,et al.  Re-describing an algorithm by Hopcroft , 2001, Theor. Comput. Sci..

[29]  Alonzo Church,et al.  Review: Edward F. Moore, Gedanken-Experiments on Sequential Machines , 1958 .

[30]  Ahmed Khorsi,et al.  Split and join for minimizing: Brzozowski's algorithm , 2002, Stringology.