Experimental demonstration of a graph state quantum error-correction code

Scalable quantum computing and communication requires the protection of quantum information from the detrimental effects of decoherence and noise. Previous work tackling this problem has relied on the original circuit model for quantum computing. However, recently a family of entangled resources known as graph states has emerged as a versatile alternative for protecting quantum information. Depending on the graph's structure, errors can be detected and corrected in an efficient way using measurement-based techniques. Here we report an experimental demonstration of error correction using a graph state code. We use an all-optical setup to encode quantum information into photons representing a four-qubit graph state. We are able to reliably detect errors and correct against qubit loss. The graph we realize is setup independent, thus it could be employed in other physical settings. Our results show that graph state codes are a promising approach for achieving scalable quantum information processing.

[1]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[2]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[3]  Giuseppe Vallone,et al.  Experimental realization of the Deutsch-Jozsa algorithm with a six-qubit cluster state , 2010 .

[4]  J. Rarity,et al.  Experimental characterization of photonic fusion using fiber sources , 2011, 1112.5580.

[5]  Debbie W. Leung,et al.  Simple proof of fault tolerance in the graph-state model (6 pages) , 2006 .

[6]  G. Tóth,et al.  Detecting genuine multipartite entanglement with two local measurements. , 2004, Physical review letters.

[7]  E. Knill Scalable quantum computing in the presence of large detected-error rates , 2003, quant-ph/0312190.

[8]  Vaidman,et al.  Error prevention scheme with four particles. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[9]  J. Rarity,et al.  Photonic quantum technologies , 2013 .

[10]  Sean D Barrett,et al.  Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.

[11]  Katsuji Yamamoto,et al.  Cluster-based architecture for fault-tolerant quantum computation , 2009, 0912.5150.

[12]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[13]  G. Vallone,et al.  Realization and characterization of a 2-photon 4-qubit linear cluster state , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[14]  D N Biggerstaff,et al.  Cluster-state quantum computing enhanced by high-fidelity generalized measurements. , 2009, Physical review letters.

[15]  Terry Rudolph,et al.  Loss tolerance with a concatenated graph state , 2012, Quantum Inf. Comput..

[16]  Austin G. Fowler,et al.  Photonic implementation for the topological cluster-state quantum computer , 2010, 1005.2915.

[17]  Jian-Wei Pan,et al.  Greenberger-Horne-Zeilinger-state analyzer , 1998 .

[18]  J. Rarity,et al.  Experimental characterization of universal one-way quantum computing , 2013, 1305.0212.

[19]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[20]  Jeremy L O'Brien,et al.  Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. , 2007, Physical review letters.

[21]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[22]  Kai Chen,et al.  Experimental realization of one-way quantum computing with two-photon four-qubit cluster states. , 2007, Physical review letters.

[23]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[24]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[25]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[26]  Pruet Kalasuwan,et al.  Simple scheme for expanding photonic cluster states for quantum information , 2010, 1003.4291.

[27]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[28]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[29]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[30]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[31]  Giuseppe Vallone,et al.  Active one-way quantum computation with two-photon four-qubit cluster states. , 2008, Physical review letters.

[32]  John G. Rarity,et al.  Intrinsically narrowband pair photon generation in microstructured fibres , 2011, 1102.4415.

[33]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[34]  Austin G. Fowler,et al.  Experimental demonstration of topological error correction , 2009, Nature.

[35]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[36]  Géza Tóth,et al.  Experimental analysis of a four-qubit photon cluster state. , 2005, Physical review letters.

[37]  Jaeyoon Cho,et al.  Two-photon four-qubit cluster state generation based on a polarization-entangled photon pair. , 2007, Optics express.

[38]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[39]  Dirk Schlingemann Logical network implementation for cluster states and graph codes , 2003, Quantum Inf. Comput..

[40]  Rainer Kaltenbaek,et al.  Experimental bound entanglement , 2010 .

[41]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[42]  M S Kim,et al.  Experimental realization of Deutsch's algorithm in a one-way quantum computer. , 2007, Physical review letters.

[43]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[44]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  M. Nielsen,et al.  Noise thresholds for optical quantum computers. , 2005, Physical review letters.

[47]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[48]  Philip Walther,et al.  Experimental realization of a quantum game on a one-way quantum computer , 2007, 0708.1129.

[49]  K.J.Resch,et al.  Experimental One-Way Quantum Computing , 2005, quant-ph/0503126.

[50]  W Dür,et al.  Measurement-based quantum computation with trapped ions. , 2013, Physical review letters.

[51]  Jian-Wei Pan,et al.  Experimental quantum coding against qubit loss error , 2008, Proceedings of the National Academy of Sciences.

[52]  Dirk Schlingemann,et al.  Quantum error-correcting codes associated with graphs , 2000, ArXiv.

[53]  Terry Rudolph,et al.  Loss tolerance in one-way quantum computation via counterfactual error correction. , 2006, Physical review letters.

[54]  Masato Koashi,et al.  Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing. , 2008, Physical review letters.

[55]  B. Zeng,et al.  Optical one-way quantum computing with a simulated valence-bond solid , 2010, 1004.3624.

[56]  J. Eisert,et al.  Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.

[57]  G. Vallone,et al.  One-Way Quantum Computation with Two-Photon Multiqubit Cluster States , 2008, 0807.3887.

[58]  Elham Kashefi,et al.  Experimental demonstration of blind quantum computing , 2012 .

[59]  Philip Walther,et al.  Demonstrating elements of measurement-based quantum error correction , 2014 .

[60]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[61]  J G Rarity,et al.  Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources. , 2009, Optics express.

[62]  Ping Xu,et al.  Experimental measurement-based quantum computing beyond the cluster-state model , 2010, 1004.4162.

[63]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[64]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[65]  Keisuke Fujii,et al.  Fault-tolerant topological one-way quantum computation with probabilistic two-qubit gates. , 2010, Physical review letters.

[66]  E. Knill Fault-Tolerant Postselected Quantum Computation: Schemes , 2004, quant-ph/0402171.

[67]  I. L. Chuang,et al.  Approximate quantum error correction can lead to better codes , 1997 .

[68]  Dirk Schlingemann Stabilizer codes can be realized as graph codes , 2002, Quantum Inf. Comput..

[69]  R. Raussendorf,et al.  Measurement-based quantum computation with the toric code states , 2006, quant-ph/0610162.

[70]  R. Prevedel,et al.  High-speed linear optics quantum computing using active feed-forward , 2007, Nature.

[71]  Elham Kashefi,et al.  A direct approach to fault-tolerance in measurement-based quantum computation via teleportation , 2006, quant-ph/0611273.

[72]  Dong-Hoon Lee,et al.  Experimental realization of a four-photon seven-qubit graph state for one-way quantum computation. , 2012, Optics express.

[73]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[74]  Andrew W. Cross,et al.  Codeword Stabilized Quantum Codes , 2009, IEEE Transactions on Information Theory.