Information-Theoretic Fuzzy Approach to Knowledge Discovery in Databases

We suggest a novel, unified approach to automating the entire process of Knowledge Discovery in Databases (KDD). The approach builds upon Shannon’s Information Theory, statistical estimation methods, and Fuzzy Logic. The KDD stages to be automated include: dimensionality reduction, discovering informative rules (patterns), predicting values of unknown attributes, and cleaning a dataset from lowly reliable data.

[1]  Richard Y. Wang,et al.  Anchoring data quality dimensions in ontological foundations , 1996, CACM.

[2]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[3]  Isabelle Guyon,et al.  Discovering Informative Patterns and Data Cleaning , 1996, Advances in Knowledge Discovery and Data Mining.

[4]  Claudia Testemale,et al.  Fuzzy relational databases - a key to expert systems , 1986, J. Am. Soc. Inf. Sci..

[5]  Thomas G. Dietterich,et al.  Efficient Algorithms for Identifying Relevant Features , 1992 .

[6]  Hiroshi Nakajima,et al.  A spreadsheet-based fuzzy retrieval system , 1996, Int. J. Intell. Syst..

[7]  Hongjun Lu,et al.  Effective Data Mining Using Neural Networks , 1996, IEEE Trans. Knowl. Data Eng..

[8]  Abraham Kandel,et al.  Fuzzy relational data bases : a key to expert systems , 1984 .

[9]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[10]  Richard Y. Wang,et al.  Toward quality data: An attribute-based approach , 2014, Decis. Support Syst..

[11]  Stephen E. Levinson,et al.  Adaptive acquisition of language , 1991 .

[12]  Padhraic Smyth,et al.  An Information Theoretic Approach to Rule-Based Connectionist Expert Systems , 1988, NIPS.

[13]  A.L. Gorin,et al.  An experiment in spoken language acquisition , 1992, IEEE Trans. Speech Audio Process..

[14]  Abraham Kandel,et al.  The Foundations of Rule-Based Computations in Fuzzy Models , 1996 .

[15]  Oded Maimon,et al.  Fuzzy Approach to Data Reliability , 2000 .

[16]  Huan Liu,et al.  Feature Selection via Discretization , 1997, IEEE Trans. Knowl. Data Eng..

[17]  Veda C. Storey,et al.  A Framework for Analysis of Data Quality Research , 1995, IEEE Trans. Knowl. Data Eng..

[18]  Claudia Testemale,et al.  Fuzzy relational databases—a key to expert systems , 1986 .

[19]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[20]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[21]  Abraham Silberschatz,et al.  Database System Concepts , 1980 .

[22]  W. R. Garner Applications of Information Theory to Psychology , 1959 .

[23]  Patrick Bosc,et al.  Fuzzy databases : principles and applications , 1996 .

[24]  Ramakrishnan Srikant,et al.  Mining quantitative association rules in large relational tables , 1996, SIGMOD '96.

[25]  J. Ross Quinlan,et al.  Simplifying decision trees , 1987, Int. J. Hum. Comput. Stud..

[26]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[27]  Rich Caruana,et al.  Greedy Attribute Selection , 1994, ICML.

[28]  S. Levinson,et al.  An experiment in spoken language acquisition , 1992 .

[29]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[30]  Daryl Pregibon,et al.  A Statistical Perspective on Knowledge Discovery in Databases , 1996, Advances in Knowledge Discovery and Data Mining.