Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD.

[1]  Thomas J Webster,et al.  Increased osteoblast function on PLGA composites containing nanophase titania. , 2005, Journal of biomedical materials research. Part A.

[2]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[3]  T. Webster,et al.  Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings. , 2005, Biomaterials.

[4]  Thomas J Webster,et al.  Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. , 2004, Biomaterials.

[5]  T. Webster,et al.  Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. , 2004, Biomaterials.

[6]  T. Webster,et al.  Comparison of antibody functionality using different immobilization methods , 2003, Biotechnology and bioengineering.

[7]  Jayanth Panyam,et al.  Biodegradable nanoparticles for drug and gene delivery to cells and tissue. , 2003, Advanced drug delivery reviews.

[8]  Thomas J Webster,et al.  Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. , 2002, Tissue engineering.

[9]  C. M. Agrawal,et al.  Age-related changes in the collagen network and toughness of bone. , 2002, Bone.

[10]  V. J. Sammarco,et al.  Modern issues in bone graft substitutes and advances in bone tissue technology. , 2002, Foot and ankle clinics.

[11]  D. Shi Biomaterials and Tissue Engineering , 2001 .

[12]  T. Webster,et al.  Enhanced osteoclast-like cell functions on nanophase ceramics. , 2001, Biomaterials.

[13]  K. Anselme,et al.  Osteoblast adhesion on biomaterials. , 2000, Biomaterials.

[14]  Marcus Textor,et al.  Covalent Attachment of Cell-Adhesive, (Arg-Gly-Asp)-Containing Peptides to Titanium Surfaces , 1998 .

[15]  A. Rezania,et al.  The detachment strength and morphology of bone cells contacting materials modified with a peptide sequence found within bone sialoprotein. , 1997, Journal of biomedical materials research.

[16]  H. J. Clarke,et al.  Stanmore Total Hip Replacement In Younger Patients: Review Of A Group Of Patients Under 50 Years Of Age At Operation , 1997 .

[17]  Buddy D. Ratner,et al.  Biomaterials Science: An Introduction to Materials in Medicine , 1996 .

[18]  K. Burridge,et al.  Formation of focal adhesions by osteoblasts adhering to different substrata. , 1994, Experimental cell research.

[19]  S. Albelda,et al.  Identification of integrin receptors on cultured human bone cells , 1994, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[20]  S. Dedhar,et al.  Integrin expression in human bone , 1993, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[21]  M. Novotny,et al.  Capillary electrophoresis of amino sugars with laser-induced fluorescence detection. , 1991, Analytical chemistry.

[22]  E Ruoslahti,et al.  New perspectives in cell adhesion: RGD and integrins. , 1987, Science.

[23]  J. Stewart Solid Phase Peptide Synthesis , 1984 .

[24]  Min Wang Bioactive Materials and Processing , 2004 .

[25]  M. Dard,et al.  Structure and function of RGD peptides involved in bone biology , 2003, Cellular and Molecular Life Sciences CMLS.

[26]  Hoexter Dl Bone regeneration graft materials. , 2002 .

[27]  T. Webster Nanophase ceramics: The future orthopedic and dental implant material , 2001 .

[28]  J. Elliott,et al.  Structure and chemistry of the apatites and other calcium orthophosphates , 1994 .

[29]  D. Brunette,et al.  The effects of implant surface topography on the behavior of cells. , 1988, The International journal of oral & maxillofacial implants.