High-temperature thermal storage using a packed bed of rocks - Heat transfer analysis and experimental validation

High-temperature thermal storage in a packed bed of rocks is considered for air-based concentrated solar power plants. The unsteady 1D two-phase energy conservation equations are formulated for combined convection and conduction heat transfer, and solved numerically for charging/discharging cycles. Validation is accomplished in a pilot-scale experimental setup with a packed bed of crushed steatite (magnesium silicate rock) at 800 K. A parameter study of the packed bed dimensions, fluid flow rate, particle diameter, and solid phase material was carried out to evaluate the charging/discharging characteristics, daily cyclic operation, overall thermal efficiency and capacity ratio.

[1]  E. Alanís,et al.  Measurement of rock pile heat transfer coefficients , 1977 .

[2]  J. J. Navarrete-González,et al.  Exergy analysis of a rock bed thermal storage system , 2008 .

[3]  K. Muralidhar,et al.  Energy storage in fluid saturated porous media subjected to oscillatory flow , 2009 .

[4]  A. I. El-Sharkawy,et al.  Effect of storage medium on thermal properties of packed beds , 1990 .

[5]  Anton Meier,et al.  Experiment for modelling high temperature rock bed storage , 1991 .

[6]  J. R. Parsons,et al.  Second Law Optimization of a Sensible Heat Thermal Energy Storage System With a Distributed Storage Element—Part 1: Development of the Analytical Model , 1991 .

[7]  W. G. Steele,et al.  Parametric Study on the Operating Efficiencies of a Packed Bed for High-Temperature Sensible Heat Storage , 1998 .

[8]  A. Steinfeld,et al.  Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing , 2010 .

[9]  Doerte Laing,et al.  Test Results of Concrete Thermal Energy Storage for Parabolic Trough Power Plants , 2009 .

[10]  Ibrahim Dincer,et al.  Porous and Complex Flow Structures in Modern Technologies , 2004 .

[11]  K. Ismail,et al.  A parametric study on possible fixed bed models for pcm and sensible heat storage , 1999 .

[12]  Y. Jaluria,et al.  An Introduction to Heat Transfer , 1950 .

[13]  G. J. Hwang,et al.  Flow and heat transfer characteristics inside packed and fluidized beds , 1998 .

[14]  T.E.W. Schumann,et al.  Heat transfer: A liquid flowing through a porous prism , 1929 .

[15]  R. Krane,et al.  A Second Law analysis of the optimum design and operation of thermal energy storage systems , 1987 .

[16]  John Beek,et al.  Design of Packed Catalytic Reactors , 1962 .

[17]  H. W. Russell PRINCIPLES OF HEAT FLOW IN POROUS INSULATORS , 1935 .

[18]  S. Ergun Fluid flow through packed columns , 1952 .

[19]  J. R. Parsons,et al.  Second Law Optimization of a Sensible Heat Thermal Energy Storage System With a Distributed Storage Element—Part II: Presentation and Interpretation of Results , 1991 .

[20]  Erich A. Farber,et al.  Two applications of a numerical approach of heat transfer process within rock beds , 1982 .

[21]  G. O. G. Löf,et al.  Unsteady-State Heat Transfer between air and loose solids , 1948 .

[22]  Pitam Chandra,et al.  Pressure drop and heat transfer characteristics of air-rockbed thermal storage systems☆ , 1981 .

[23]  D. Crandall,et al.  Segmented thermal storage , 2004 .

[24]  Peter Glarborg,et al.  Heat transfer in ash deposits: A modelling tool-box , 2005 .

[25]  D. E. Beasley,et al.  Transient response of a packed bed for thermal energy storage , 1983 .