Ultrasonic imaging by local shape function method with CGFFT

A numerical algorithm for the reconstruction of the density and the compressibility of a biological body from ultrasonic scattering data is presented. The reconstruction algorithm is based on the local shape function method (LSF) combined with the conjugate gradient method with fast Fourier transform (CGFFT). The nonlinearity due to the multiple scattering has been accounted for in an iterative minimization scheme. Numerical examples of simulation data and real experimental data are given showing the capability of this algorithm.

[1]  A. Devaney Inverse-scattering theory within the Rytov approximation. , 1981, Optics letters.

[2]  Robert C. Waag,et al.  A Review of Tissue Characterization from Ultrasonic Scattering , 1984, IEEE Transactions on Biomedical Engineering.

[3]  Peter Monk,et al.  The numerical solution of the three-dimensional inverse scattering problem for time harmonic acoustic waves , 1987 .

[4]  I. Ciric,et al.  Method of selecting the regularisation parameter for microwave imaging , 1994 .

[5]  A. J. Devaney Variable density acoustic tomography , 1985 .

[6]  A. Devaney Inversion formula for inverse scattering within the Born approximation. , 1982, Optics letters.

[7]  M. Kaveh,et al.  Reconstructive tomography and applications to ultrasonics , 1979, Proceedings of the IEEE.

[8]  Jean-Charles Bolomey,et al.  Microwave tomography: From theory to practical imaging systems , 1990, Int. J. Imaging Syst. Technol..

[9]  Inverse scattering scheme based on the moment method in the spectral domain, Part II: Numerical simulation. , 1992, Ultrasonic imaging.

[10]  W. Chew,et al.  Nepal—an algorithm for solving the volume integral equation , 1993 .

[11]  S. Johnson,et al.  Inverse Scattering Solutions by a Sinc Basis, Multiple Source, Moment Method -- Part II: Numerical Evaluations , 1983, Ultrasonic imaging.

[12]  Weng Cho Chew,et al.  Simultaneous inversion of compressibility and density in the acoustic inverse problem , 1993 .

[13]  Peter Monk,et al.  A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium , 1989 .

[14]  Weng Cho Chew,et al.  Inverse scattering of Hz waves using local shape‐function imaging: A T‐matrix formulation , 1994, Int. J. Imaging Syst. Technol..

[15]  Steven A. Johnson,et al.  WAVE EQUATIONS AND INVERSE SOLUTIONS FOR SOFT TISSUE , 1982 .

[16]  S. Johnson,et al.  Inverse Scattering Solutions by a Sinc Basis, Multiple Source, Moment Method -- Part I: Theory , 1983, Ultrasonic imaging.

[17]  W. Chew,et al.  Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. , 1990, IEEE transactions on medical imaging.

[18]  William D. O'Brien,et al.  Numerical Study of Higher-Order Diffraction Tomography via the Sinc Basis Moment Method , 1989 .

[19]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[20]  W. Chew,et al.  A frequency-hopping approach for microwave imaging of large inhomogeneous bodies , 1995, IEEE Antennas and Propagation Society International Symposium. 1995 Digest.

[21]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[23]  Reinhold Ludwig,et al.  Nonlinear Diffractive Inverse Scattering for Multiple-Scattering in Inhomogeneous Acoustic Background Media , 1995 .

[24]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[25]  B. Levy,et al.  Simultaneous linearized inversion of velocity and density profiles for multidimensional acoustic media , 1991 .

[26]  S. Y. Kim,et al.  Inverse scattering scheme based on the moment method in the spectral domain, Part I: Theory. , 1992, Ultrasonic imaging.

[27]  M. J. Berggren,et al.  Nonperturbative Diffraction Tomography via Gauss-Newton Iteration Applied to the Scattering Integral Equation , 1992 .

[28]  F Stenger,et al.  Inverse scattering solutions by a sinc basis, multiple source, moment method--Part III: Fast algorithms. , 1984, Ultrasonic imaging.

[29]  Michael P. Andre,et al.  A New Consideration of Diffraction Computed Tomography for Breast Imaging: Studies in Phantoms and Patients , 1995 .

[30]  Michael V. Klibanov,et al.  TWO VERSIONS OF QUASI-NEWTON METHOD FOR MULTIDIMENSIONAL INVERSE SCATTERING PROBLEM , 1993 .

[31]  Didier Girard Practical optimal regularization of large linear systems , 1986 .

[32]  P. Waterman Matrix formulation of electromagnetic scattering , 1965 .

[33]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .