Behavioral and neurophysiological aspects of target interception.

This chapter focuses on the behavioral and neurophysiological aspects of manual interception. We review the most important elements of an interceptive action from the sensory and cognitive stage to the motor side of this behavior. We describe different spatial and temporal target parameters that can be used to control the interception movement, as well as the different strategies used by the subject to intercept a moving target. We review the neurophysiological properties of the parietofrontal system during target motion processing and during a particular experiment of target interception. Finally, we describe the neural responses associated with the temporal and spatial parameters of a moving target and the possible neurophysiological mechanisms used to integrate this information in order to trigger an interception movement.

[1]  F. Lacquaniti,et al.  Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. , 2001, Cerebral cortex.

[2]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[3]  David N. Lee Guiding Movement by Coupling Taus , 1998 .

[4]  Daeyeol Lee,et al.  Manual interception of moving targets I. Performance and movement initiation , 1997, Experimental Brain Research.

[5]  David N. Lee,et al.  A Theory of Visual Control of Braking Based on Information about Time-to-Collision , 1976, Perception.

[6]  N. A. Borghese,et al.  Time-varying mechanical behavior of multijointed arm in man. , 1993, Journal of neurophysiology.

[7]  R. Andersen,et al.  Mechanisms of Heading Perception in Primate Visual Cortex , 1996, Science.

[8]  J. Tresilian Hitting a moving target: Perception and action in the timing of rapid interceptions , 2005, Perception & psychophysics.

[9]  G. Laurent,et al.  Elementary Computation of Object Approach by a Wide-Field Visual Neuron , 1995, Science.

[10]  Daeyeol Lee,et al.  Manual interception of moving targets II. On-line control of overlapping submovements , 1997, Experimental Brain Research.

[11]  A P Georgopoulos,et al.  Effects of optic flow in motor cortex and area 7a. , 2001, Journal of neurophysiology.

[12]  Apostolos P Georgopoulos,et al.  Neural aspects of cognitive motor control , 2000, Current Opinion in Neurobiology.

[13]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[14]  John P. Wann,et al.  Perceiving Time to Collision Activates the Sensorimotor Cortex , 2005, Current Biology.

[15]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[16]  F. Lacquaniti,et al.  Cognitive, perceptual and action-oriented representations of falling objects , 2005, Neuropsychologia.

[17]  Rob Gray,et al.  Behavior of college baseball players in a virtual batting task. , 2002, Journal of experimental psychology. Human perception and performance.

[18]  P. Simmons,et al.  Seeing what is coming: building collision-sensitive neurones , 1999, Trends in Neurosciences.

[19]  J. Tresilian,et al.  Temporal precision of interceptive action: differential effects of target size and speed , 2003, Experimental Brain Research.

[20]  Paul B. Johnson,et al.  Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. , 1997, Annual review of neuroscience.

[21]  M. Shadlen,et al.  Representation of Time by Neurons in the Posterior Parietal Cortex of the Macaque , 2003, Neuron.

[22]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[23]  A. Georgopoulos,et al.  Neural responses in motor cortex and area 7a to real and apparent motion , 2004, Experimental Brain Research.

[24]  E. Brenner,et al.  The effect of expectations on hitting moving targets: influence of the preceding target's speed , 2001, Experimental Brain Research.

[25]  Apostolos P. Georgopoulos,et al.  Interception of real and apparent motion targets: psychophysics in humans and monkeys , 2003, Experimental Brain Research.

[26]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[27]  Alexandra Battaglia-Mayer,et al.  Functional organization of parietal neuronal responses to optic-flow stimuli. , 2003, Journal of neurophysiology.

[28]  J. Tresilian,et al.  a moving target: effects of temporal precision constraints and movement amplitude , 2022 .

[29]  A. Georgopoulos,et al.  Neurophysiology of perceptual and motor aspects of interception. , 2006, Journal of neurophysiology.

[30]  John P. Wann,et al.  Anticipating arrival: is the tau margin a specious theory? , 1996, Journal of experimental psychology. Human perception and performance.

[31]  J. Tresilian Visually timed action: time-out for ‘tau’? , 1999, Trends in Cognitive Sciences.

[32]  R. M. Siegel,et al.  Analysis of optic flow in the monkey parietal area 7a. , 1997, Cerebral cortex.

[33]  R. Wurtz,et al.  Response of monkey MST neurons to optic flow stimuli with shifted centers of motion , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  James R Tresilian,et al.  The Accuracy of Interceptive Action in Time and Space , 2004, Exercise and sport sciences reviews.

[35]  R. M. Siegel,et al.  Speed selectivity for optic flow in area 7a of the behaving macaque. , 2000, Cerebral cortex.

[36]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  Andrea H. Mason,et al.  Target viewing time and velocity effects on prehension , 1999, Experimental Brain Research.

[38]  K Cheng,et al.  Human cortical regions activated by wide-field visual motion: an H2(15)O PET study. , 1995, Journal of neurophysiology.

[39]  Rob Gray,et al.  “Markov at the Bat”: A Model of Cognitive Processing in Baseball Batters , 2002, Psychological science.

[40]  P. Perona,et al.  Where is the sun? , 1998, Nature Neuroscience.

[41]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[42]  Rind,et al.  The locust DCMD, a movement-detecting neurone tightly tuned to collision trajectories , 1997, The Journal of experimental biology.

[43]  R. Gellman,et al.  Control strategies in directing the hand to moving targets , 1992, Experimental Brain Research.

[44]  Paul B. Johnson,et al.  Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. , 1996, Cerebral cortex.

[45]  B. Frost,et al.  Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons , 1998, Nature Neuroscience.

[46]  F. Lacquaniti,et al.  Representation of Visual Gravitational Motion in the Human Vestibular Cortex , 2005, Science.

[47]  J. Tresilian,et al.  Systematic Variation in Performance of an Interceptive Action with Changes in the Temporal Constraints , 2005, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[48]  Apostolos P. Georgopoulos,et al.  Decoding of path-guided apparent motion from neural ensembles in posterior parietal cortex , 2005, Experimental Brain Research.

[49]  Marion A. Eppler,et al.  Development of Visually Guided Locomotion , 1998 .

[50]  R N Shepard,et al.  Path-guided apparent motion. , 1983, Science.

[51]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[52]  A. Georgopoulos,et al.  Neural responses during interception of real and apparent circularly moving stimuli in motor cortex and area 7a. , 2004, Cerebral cortex.

[53]  B. C. Motter,et al.  The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  F. Lacquaniti,et al.  Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions. , 2004, Journal of neurophysiology.

[55]  David N. Lee,et al.  Plummeting gannets: a paradigm of ecological optics , 1981, Nature.

[56]  Apostolos P. Georgopoulos,et al.  Guiding contact by coupling the taus of gaps , 2001, Experimental Brain Research.

[57]  R. Andersen,et al.  Neural Mechanisms of Visual Motion Perception in Primates , 1997, Neuron.

[58]  K. H. Britten,et al.  Neuronal mechanisms of motion perception. , 1990, Cold Spring Harbor symposia on quantitative biology.

[59]  R Caminiti,et al.  Eye-hand coordination during reaching. II. An analysis of the relationships between visuomanual signals in parietal cortex and parieto-frontal association projections. , 2001, Cerebral cortex.

[60]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[61]  G. Luppino,et al.  Parietofrontal Circuits for Action and Space Perception in the Macaque Monkey , 2001, NeuroImage.

[62]  R. Wurtz,et al.  Medial Superior Temporal Area Neurons Respond to Speed Patterns in Optic Flow , 1997, The Journal of Neuroscience.

[63]  Maninder K. Kahlon,et al.  Visual Motion Analysis for Pursuit Eye Movements in Area MT of Macaque Monkeys , 1999, The Journal of Neuroscience.

[64]  E Brenner,et al.  Hitting moving objects. The dependency of hand velocity on the speed of the target. , 2000, Experimental brain research.