Practical global illumination for interactive particle visualization

Particle-based simulation methods are used to model a wide range of complex phenomena and to solve time-dependent problems of various scales. Effective visualizations of the resulting state will communicate subtle changes in the three-dimensional structure, spatial organization, and qualitative trends within a simulation as it evolves. We present two algorithms targeting upcoming, highly parallel multicore desktop systems to enable interactive navigation and exploration of large particle data sets with global illumination effects. Monte Carlo path tracing and texture mapping are used to capture computationally expensive illumination effects such as soft shadows and diffuse interreflection. The first approach is based on precomputation of luminance textures and removes expensive illumination calculations from the interactive rendering pipeline. The second approach is based on dynamic luminance texture generation and decouples interactive rendering from the computation of global illumination effects. These algorithms provide visual cues that enhance the ability to perform analysis and feature detection tasks while interrogating the data at interactive rates. We explore the performance of these algorithms and demonstrate their effectiveness using several large data sets.

[1]  Haitao Zhao,et al.  A novel incremental principal component analysis and its application for face recognition , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  George Drettakis,et al.  Interactive Rendering using the Render Cache , 1999, Rendering Techniques.

[3]  Issei Fujishiro,et al.  Human behavior-oriented adaptive texture mapping: a time-critical approach for image-based virtual showrooms , 1997, Proceedings of IEEE 1997 Annual International Symposium on Virtual Reality.

[4]  P. Zemcik,et al.  Particle rendering engine in DSP and FPGA , 2004, Proceedings. 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems, 2004..

[5]  Patricia Monger,et al.  Interactive Parallel Visualization of Large Particle Datasets , 2004, EGPGV.

[6]  Michael Gschwind The Cell Broadband Engine: Exploiting Multiple Levels of Parallelism in a Chip Multiprocessor , 2007, International Journal of Parallel Programming.

[7]  Steven G. Parker,et al.  Enhancing interactive particle visualization with advanced shading models , 2006, APGV '06.

[8]  Charles D. Hansen,et al.  A Case Study: Visualizing Material Point Method Data , 2006, EuroVis.

[9]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[10]  Kevin Liang,et al.  Interactive parallel visualization of large particle datasets , 2004 .

[11]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[12]  Peter-Pike J. Sloan,et al.  Interactive ray tracing , 2005, SIGGRAPH Courses.

[13]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[14]  S.G. Parker,et al.  Design for Parallel Interactive Ray Tracing Systems , 2006, 2006 IEEE Symposium on Interactive Ray Tracing.

[15]  Ingo Wald,et al.  A Coherent Grid Traversal Approach to Visualizing Particle-Based Simulation Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[16]  Seth J. Teller,et al.  Radiance interpolants for accelerated bounded-error ray tracing , 1999, TOGS.

[17]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[18]  Juyang Weng,et al.  Candid Covariance-Free Incremental Principal Component Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[20]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[21]  Steven G. Parker,et al.  Visualizing Particle-Based Simulation Datasets on the Desktop , 2006 .

[22]  P. Fayers,et al.  The Visual Display of Quantitative Information , 1990 .

[23]  Donald P. Greenberg,et al.  The Irradiance Volume , 1998, IEEE Computer Graphics and Applications.

[24]  Edward Rolf Tufte,et al.  The visual display of quantitative information , 1985 .

[25]  Pat Hanrahan,et al.  An efficient representation for irradiance environment maps , 2001, SIGGRAPH.

[26]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[27]  Anthony Lewis Brooks,et al.  SoundScapes: non-formal learning potentials from interactive VEs , 2007, SIGGRAPH '07.

[28]  Pat Hanrahan,et al.  All-frequency shadows using non-linear wavelet lighting approximation , 2003, ACM Trans. Graph..

[29]  Charles D. Hansen,et al.  Parallel Sphere Rendering , 1995, Parallel Comput..

[30]  Peter Shirley,et al.  A Low Distortion Map Between Disk and Square , 1997, J. Graphics, GPU, & Game Tools.

[31]  Veronica Sundstedt,et al.  Top-Down Visual Attention for Efficient Rendering of Task Related Scenes , 2004, VMV.