Design methodology of organic Rankine cycle for waste heat recovery in cement plants

Abstract An organic Rankine cycle (ORC) is similar to a conventional steam cycle energy conversion system, but uses organic fluid, such as refrigerants and hydrocarbons, instead of water. A renewed research interest in ORC focuses on its progressive adoption as a premier technology for converting low and medium temperature i.e. 80 °C

[1]  V. Maizza,et al.  Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems , 2001 .

[2]  Michele Bianchi,et al.  Bottoming cycles for electric energy generation: Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources , 2011 .

[3]  Vincent Lemort,et al.  Thermo-economic optimization of waste heat recovery Organic Rankine Cycles , 2011 .

[4]  Joaquín Navarro-Esbrí,et al.  Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry , 2015 .

[5]  T. Hung Waste heat recovery of organic Rankine cycle using dry fluids , 2001 .

[6]  T. Hikmet Karakoc,et al.  Mathematical modeling of heat recovery from a rotary kiln , 2010 .

[7]  S. K. Wang,et al.  A Review of Organic Rankine Cycles (ORCs) for the Recovery of Low-grade Waste Heat , 1997 .

[8]  Ezzat Wali,et al.  Optimum working fluids for solar powered Rankine cycle cooling of buildings , 1980 .

[9]  N. Lai,et al.  Working fluids for high-temperature organic Rankine cycles , 2007 .

[10]  J. P. Hartnett,et al.  Advances in Heat Transfer , 2003 .

[11]  Xi Chen,et al.  Efficiency Improving Strategies of Low-temperature Heat Conversion Systems Using Organic Rankine Cycles: An Overview , 2011 .

[12]  Volker Gnielinski,et al.  Berechnung mittlerer Wärme- und Stoffübergangskoeffizienten an laminar und turbulent überströmten Einzelkörpern mit Hilfe einer einheitlichen Gleichung , 1975 .

[13]  Ali Hasanbeigi,et al.  Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: A case study of 16 cement plants , 2010 .

[14]  Li Zhao,et al.  A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle , 2010 .

[15]  Gary E Rochau,et al.  Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle , 2012 .

[16]  Guo Tao,et al.  Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation , 2011 .

[17]  Mohammad. Rasul,et al.  Assessment of the thermal performance and energy conservation opportunities of a cement industry in Indonesia , 2005 .

[18]  Sotirios Karellas,et al.  Supercritical Fluid Parameters in Organic Rankine Cycle Applications , 2008 .

[19]  Vivek Chawla,et al.  Sustainable Development through Waste Heat Recovery , 2010 .

[20]  Anna Stoppato,et al.  Energetic and economic investigation of the operation management of an Organic Rankine Cycle cogeneration plant , 2012 .

[21]  Tao Guo,et al.  Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system , 2011 .

[22]  V. Ganapathy,et al.  Heat-recovery steam generators: Understand the basics , 1996 .

[23]  Martin Désilets,et al.  Thermodynamic analysis of a power cycle using a low-temperature source and a binary NH3–H2O mixture as working fluid , 2010 .

[24]  Vincent Lemort,et al.  Techno-economic survey of Organic Rankine Cycle (ORC) systems , 2013 .

[25]  Isabella Ruble,et al.  Energy policies and domestic politics in the MENA region in the Aftermath of the Arab Upheavals: The Cases of Lebanon, Libya, and KSA , 2013 .

[26]  M. M. Rahman,et al.  A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade , 2011 .