Measuring weak lensing correlations of Type Ia supernovae

We study the feasibility of detecting weak lensing spatial correlations between supernova (SN) Type Ia magnitudes with present (Dark Energy Survey, DES) and future (Large Synoptic Survey Telescope, LSST) surveys. We investigate the angular auto-correlation function of SN magnitudes (once the background cosmology has been subtracted) and cross-correlation with galaxy catalogues. We examine both analytical and numerical predictions, the latter using simulated galaxy catalogues from the MICE Grand Challenge Simulation. We predict that we will be unable to detect the SN auto-correlation in DES, while it should be detectable with the LSST SN deep fields (15 000 SNe on 70 deg) at ≃6σ level of confidence (assuming 0.15 mag of intrinsic dispersion). The SN-galaxy cross-correlation function will deliver much higher signal to noise, being detectable in both surveys with an integrated signal to noise of ~100 (up to 30 arcmin separations). We predict joint constraints on the matter density parameter (Ω) and the clustering amplitude (σ) by fitting the auto-correlation function of our mock LSST deep fields. When assuming a Gaussian prior for Ω, we can achieve a 25 per cent measurement of σ from just these LSST supernovae (assuming 0.15 mag of intrinsic dispersion). These constraints will improve significantly if the intrinsic dispersion of SNe Ia can be reduced.

[1]  I. Hook,et al.  Constraining dark matter halo properties using lensed Supernova Legacy Survey supernovae , 2010, 1002.1374.

[2]  Correlated fluctuations in luminosity distance and the importance of peculiar motion in supernova surveys , 2005, astro-ph/0512159.

[3]  K. Pedersen,et al.  Gravitational lensing in the supernova legacy survey (SNLS) , 2010, 1002.1249.

[4]  M. Sullivan,et al.  SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY , 2011, 1111.1969.

[5]  J. Sollerman,et al.  Prospects and pitfalls of gravitational lensing in large supernova surveys , 2008, 0806.1387.

[6]  William H. Press,et al.  The Cosmological constant , 1992 .

[7]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[8]  First measurement of σ8 using supernova magnitudes only , 2014, 1403.0293.

[9]  B. Flannery,et al.  Book Review: Numerical recipes in C: the art of scientific computing / Cambridge U Press, 1993 , 1993 .

[10]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[11]  M. Sullivan,et al.  THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY , 2015, 1507.05137.

[12]  K. Schwarzschild,et al.  The Observatory , 1886 .

[13]  L. Amendola,et al.  Constraining the growth of perturbations with lensing of supernovae , 2014, 1412.3703.

[14]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[15]  Mohan Ganeshalingam,et al.  Distances with <4% precision from type Ia supernovae in young star-forming environments , 2014, Science.

[16]  P. Schneider,et al.  Gravitational lensing statistics of amplified supernovae , 1988 .

[17]  R. Nichol,et al.  THE EFFECT OF WEAK LENSING ON DISTANCE ESTIMATES FROM SUPERNOVAE , 2013, 1307.2566.

[18]  J. E. Carlstrom,et al.  CMB lensing tomography with the DES Science Verification galaxies , 2015, Monthly Notices of the Royal Astronomical Society.

[19]  L. Amendola,et al.  Accurate Weak Lensing of Standard Candles. II. Measuring sigma8 with Supernovae , 2013, 1307.1155.

[20]  Roberto Scaramella,et al.  On the shear estimation bias induced by the spatial variation of colour across galaxy profiles. , 2012, 1211.5025.

[21]  F. Castander,et al.  The MICE Grand Challenge light-cone simulation – III. Galaxy lensing mocks from all-sky lensing maps , 2013, 1312.2947.

[22]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[23]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[24]  Gravitational Lensing of Distant Field Galaxies by Rich Clusters: II. Cluster Mass Distributions. , 1994, astro-ph/9402049.

[25]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[26]  M. Quartin,et al.  Constraining the halo mass function with observations , 2016, 1605.07548.

[27]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[28]  L. Amendola,et al.  Accurate weak lensing of standard candles. I. Flexible cosmological fits , 2013, 1304.7689.

[29]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[30]  R. Nichol,et al.  The effects of velocities and lensing on moments of the Hubble diagram , 2016, 1607.03966.

[31]  F. Castander,et al.  The onion universe: all sky lightcone simulations in spherical shells , 2007, 0711.1540.

[32]  Peter Schneider,et al.  Gravitational Lensing: Strong, Weak and Micro , 2006 .

[33]  S. Benitez-Herrera,et al.  Turning noise into signal: learning from the scatter in the Hubble diagram , 2015, 1511.08695.

[34]  Scott Dodelson,et al.  Learning from the Scatter in Type Ia Supernovae , 2006 .

[35]  F. Castander,et al.  The MICE Grand Challenge lightcone simulation – II. Halo and galaxy catalogues , 2013, 1312.2013.

[36]  R. Nichol,et al.  Cosmology with superluminous supernovae , 2015, 1511.06670.

[37]  G. Meylan,et al.  Gravitational Lensing: Strong, Weak and Micro: Swiss Society for Astrophysics and Astronomy , 2006 .

[38]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.