Classical Negation and Expansions of Belnap–Dunn Logic

We investigate the notion of classical negation from a non-classical perspective. In particular, one aim is to determine what classical negation amounts to in a paracomplete and paraconsistent four-valued setting. We first give a general semantic characterization of classical negation and then consider an axiomatic expansion BD+ of four-valued Belnap–Dunn logic by classical negation. We show the expansion complete and maximal. Finally, we compare BD+ to some related systems found in the literature, specifically a four-valued modal logic of Béziau and the logic of classical implication and a paraconsistent de Morgan negation of Zaitsev.

[1]  Schiller Joe Scroggs Extensions of the Lewis System S5 , 1951, J. Symb. Log..

[2]  Katsuhiko Sano,et al.  An expansion of first-order Belnap-Dunn logic , 2014, Log. J. IGPL.

[3]  Michael De Negation in context , 2011 .

[4]  Jean-Yves Béziau A new four-valued approach to modal logic , 2011 .

[5]  Jean-Yves Béziau Classical Negation can be Expressed by One of its Halves , 1999, Log. J. IGPL.

[6]  Sergei P. Odintsov The Class of Extensions of Nelson's Paraconsistent Logic , 2005, Stud Logica.

[7]  Anna Zamansky,et al.  Maximal and Premaximal Paraconsistency in the Framework of Three-Valued Semantics , 2011, Stud Logica.

[8]  Anthony Hunter,et al.  Paraconsistent logics , 1998 .

[9]  Masazumi Hanazawa A characterization of axiom schema playing the rôle of tertium non datur in intuitionistic logic , 1966 .

[10]  B. H. Slater,et al.  Paraconsistent logics? , 1995, J. Philos. Log..

[11]  B. J. Copeland What is a Semantics for Classical Negation , 1986 .

[12]  Graham Priest,et al.  Can Contradictions Be True , 1993 .

[13]  Arnon Avron,et al.  Natural 3-valued logics—characterization and proof theory , 1991, Journal of Symbolic Logic.

[14]  Newton C. A. da Costa,et al.  On the theory of inconsistent formal systems , 1974, Notre Dame J. Formal Log..

[15]  Marie Frei,et al.  In Contradiction A Study Of The Transconsistent , 2016 .

[16]  Elliott Mendelson,et al.  Introduction to mathematical logic (3. ed.) , 1987 .

[17]  Richard Routley,et al.  Classical relevant logics. I , 1973 .

[18]  Heinrich Wansing,et al.  Proof theory of Nelson's paraconsistent logic: A uniform perspective , 2012, Theor. Comput. Sci..

[19]  G. Priest Doubt truth to be a liar , 2006 .

[20]  Anna Zamansky,et al.  Ideal Paraconsistent Logics , 2011, Stud Logica.

[21]  J. Martin Marcos,et al.  Formal inconsistency and evolutionary databases , 2004 .

[22]  Hitoshi Omori,et al.  Some Observations on the Systems LFI1 and LFI1 , 2011, 2011 22nd International Workshop on Database and Expert Systems Applications.

[23]  Hitoshi Omori Remarks on Naive Set Theory based on LP , 2015, Rev. Symb. Log..

[24]  S. Jaskowski A propositional calculus for inconsistent deductive systems , 2004 .

[25]  S. Odintsov Constructive Negations and Paraconsistency , 2008 .

[26]  Richard Routley,et al.  Classical relevant logics II , 1973 .