A Lightning Data Assimilation Technique for Mesoscale Forecast Models

Abstract Lightning observations have been assimilated into a mesoscale model for improvement of forecast initial conditions. Data are used from the National Lightning Detection Network (cloud-to-ground lightning detection) and a Lightning Mapping Array (total lightning detection) that was installed in western Kansas–eastern Colorado. The assimilation method uses lightning as a proxy for the presence or absence of deep convection. During assimilation, lightning data are used to control the Kain–Fritsch (KF) convection parameterization scheme. The KF scheme can be forced to try to produce convection where lightning indicated storms, and, conversely, can optionally be prevented from producing spurious convection where no lightning was observed. Up to 1 g kg−1 of water vapor may be added to the boundary layer when the KF convection is too weak. The method does not employ any lightning–rainfall relationships, but rather allows the KF scheme to generate heating and cooling rates from its modeled convection. The...

[1]  E. Anagnostou,et al.  Improving Convective Precipitation Forecasting through Assimilation of Regional Lightning Measurements in a Mesoscale Model , 2003 .

[2]  A. Betts,et al.  A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air‐mass data sets , 1986 .

[3]  Roger Lhermitte,et al.  Doppler Radar and Radio Observations of Thunderstorms , 1979, IEEE Transactions on Geoscience Electronics.

[4]  John S. Kain,et al.  The Kain–Fritsch Convective Parameterization: An Update , 2004 .

[5]  W. D. Rust,et al.  The electrical nature of storms , 1998 .

[6]  Michael E. Baldwin,et al.  Bowing Convective Systems in a Popular Operational Model: Are They for Real? , 2006 .

[7]  V. M. Karyampudi,et al.  The Effect of Assimilating Rain Rates Derived from Satellites and Lightning on Forecasts of the 1993 Superstorm , 1999 .

[8]  Barry E. Schwartz,et al.  An Hourly Assimilation–Forecast Cycle: The RUC , 2004 .

[9]  Moti Segal,et al.  Impact of Improved Initialization of Mesoscale Features on Convective System Rainfall in 10-km Eta Simulations , 2001 .

[10]  R. Errico,et al.  Examination of the sensitivity of forecast precipitation rates to possible perturbations of initial conditions , 2003 .

[11]  L. Fillion,et al.  Tangent Linear Aspects of the Kain–Fritsch Moist Convective Parameterization Scheme , 2004 .

[12]  D. Stensrud,et al.  Mesoscale Precipitation Fields. Part II: Hydrometeorologic Modeling , 1999 .

[13]  Kenneth L. Cummins,et al.  A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network , 1998 .

[14]  D. Stensrud Effects of Persistent, Midlatitude Mesoscale Regions of Convection on the Large-Scale Environment during the Warm Season , 1996 .

[15]  Roger A. Pielke,et al.  A Modeling Study of the Dryline , 1995 .

[16]  Winifred C. Lambert,et al.  A Simple Technique for Using Radar Data in the Dynamic Initialization of a Mesoscale Model , 2000 .

[17]  P. Krehbiel,et al.  Accuracy of the Lightning Mapping Array , 2003 .

[18]  Z. Janjic The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes , 1994 .

[19]  D. Stensrud,et al.  Mesoscale Convective Systems in Weakly Forced Large-Scale Environments. Part II: Generation of a Mesoscale Initial Condition , 1994 .

[20]  R. Pielke,et al.  Convective Initiation at the Dryline: A Modeling Study , 1997 .

[21]  R. Hodur The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) , 1997 .

[22]  William S. Olson,et al.  The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 groundhog day storm , 2001 .

[23]  Dong-Jun Seo,et al.  The WSR-88D rainfall algorithm , 1998 .

[24]  A. Betts A new convective adjustment scheme. Part I: Observational and theoretical basis , 1986 .

[25]  Dong-Jun Seo,et al.  Real-time estimation of rainfall fields using radar rainfall and rain gage data , 1998 .

[26]  K. Mitchell,et al.  Importance of Cold Pools to NCEP Mesoscale Eta Model Forecasts , 1999 .

[27]  N. A. Crook Sensitivity of Moist Convection Forced by Boundary Layer Processes to Low-Level Thermodynamic Fields , 1996 .

[28]  David J. Stensrud,et al.  Behaviors of Variational and Nudging Assimilation Techniques with a Chaotic Low-Order Model , 1992 .

[29]  B. Macpherson,et al.  A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model , 1997 .

[30]  Thomas T. Warner,et al.  Nested-Model Simulation of Moist Convection: The Impact of Coarse-Grid Parameterized Convection on Fine-Grid Resolved Convection , 2000 .

[31]  J. M. Fritsch,et al.  Preliminary Numerical Tests of the Modification of Mesoscale Convective Systems , 1981 .

[32]  Robert F. Rogers,et al.  A General Framework for Convective Trigger Functions , 1996 .

[33]  K. Cummins,et al.  Combined Satellite- and Surface-Based Estimation of the Intracloud Cloud-to-Ground Lightning Ratio over the Continental United States , 2001 .

[34]  J. Kain,et al.  The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems , 1992 .

[35]  John S. Kain,et al.  Convective parameterization for mesoscale models : The Kain-Fritsch Scheme , 1993 .

[36]  D. Stensrud,et al.  Mesoscale Convective Systems in Weakly Forced Large-Scale Environments. Part III: Numerical Simulations and Implications for Operational Forecasting , 1994 .

[37]  David J. Stensrud,et al.  The Impact of the Land Surface Physics in the Operational NCEP Eta Model on Simulating the Diurnal Cycle: Evaluation and Testing Using Oklahoma Mesonet Data , 2003 .

[38]  Paul Krehbiel,et al.  A GPS‐based three‐dimensional lightning mapping system: Initial observations in central New Mexico , 1999 .