The Black Box of Cellular and Molecular Events of Plasmodium vivax Merozoite Invasion into Reticulocytes

Plasmodium vivax is the most widely distributed malaria parasite affecting humans worldwide, causing ~5 million cases yearly. Despite the disease’s extensive burden, there are gaps in the knowledge of the pathophysiological mechanisms by which P. vivax invades reticulocytes. In contrast, this crucial step is better understood for P. falciparum, the less widely distributed but more often fatal malaria parasite. This discrepancy is due to the difficulty of studying P. vivax’s exclusive invasion of reticulocytes, which represent 1–2% of circulating cells. Its accurate targeting mechanism has not yet been clarified, hindering the establishment of long-term continuous in vitro culture systems. So far, only three reticulocyte invasion pathways have been characterised based on parasite interactions with DARC, TfR1 and CD98 host proteins. However, exposing the parasite’s alternative invasion mechanisms is currently being considered, opening up a large field for exploring the entry receptors used by P. vivax for invading host cells. New methods must be developed to ensure better understanding of the parasite to control malarial transmission and to eradicate the disease. Here, we review the current state of knowledge on cellular and molecular mechanisms of P. vivax’s merozoite invasion to contribute to a better understanding of the parasite’s biology, pathogenesis and epidemiology.

[1]  J. Perkel,et al.  Single-cell proteomics takes centre stage , 2021, Nature.

[2]  L. Rénia,et al.  Children with , 2021 .

[3]  S. Maurer-Stroh,et al.  Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells , 2021, Nature Microbiology.

[4]  Daniel R. Kepple,et al.  Plasmodium vivax from Duffy-Negative and Duffy-Positive Individuals Shares Similar Gene Pool in East Africa. , 2021, The Journal of infectious diseases.

[5]  G. Paganotti,et al.  Plasmodium vivax Infections Detected in a Large Number of Febrile Duffy-Negative Africans in Dschang, Cameroon. , 2021, The American journal of tropical medicine and hygiene.

[6]  W. Tham,et al.  Naturally acquired blocking human monoclonal antibodies to Plasmodiumvivax reticulocyte binding protein 2b , 2020, Nature Communications.

[7]  R. Verity,et al.  The epidemiology of Plasmodium vivax among adults in the Democratic Republic of the Congo , 2020, Nature Communications.

[8]  E. Pasini,et al.  Parasite-Host Interaction and Pathophysiology Studies of the Human Relapsing Malarias Plasmodium vivax and Plasmodium ovale Infections in Non-Human Primates , 2021, Frontiers in Cellular and Infection Microbiology.

[9]  Gabriel W. Rangel,et al.  Plasmodium vivax strains use alternative pathways for invasion. , 2020, The Journal of infectious diseases.

[10]  Erika L. Flannery,et al.  A Humanized Mouse Model for Plasmodium vivax to Test Interventions that Block Liver Stage to Blood Stage Transition and Blood Stage Infection , 2020, iScience.

[11]  D. Ndiaye,et al.  Presence of additional Plasmodium vivax malaria in Duffy negative individuals from Southwestern Nigeria , 2020, Malaria Journal.

[12]  T. Horii,et al.  Faculty Opinions recommendation of Structural basis for neutralization of Plasmodium vivax by naturally acquired human antibodies that target DBP. , 2020 .

[13]  V. Rougeron,et al.  The enigmatic mechanisms by which Plasmodium vivax infects Duffy-negative individuals , 2020, PLoS pathogens.

[14]  C. Lim,et al.  Reticulocyte Infection Leads to Altered Behaviour, Drug Sensitivity and Host Cell Remodelling by Plasmodium falciparum , 2019, bioRxiv.

[15]  M. Ibrahim,et al.  Distribution of Duffy Phenotypes among Plasmodium vivax Infections in Sudan , 2019, Genes.

[16]  N. Tolia,et al.  Structural basis for neutralization of Plasmodium vivax by naturally acquired human antibodies that target , 2019 .

[17]  Daniel R. Kepple,et al.  Frequent expansion of Plasmodium vivax Duffy Binding Protein in Ethiopia and its epidemiological significance , 2019, bioRxiv.

[18]  Leah R. Johnson,et al.  Plasmodium vivax readiness to transmit: implication for malaria eradication , 2019, BMC Systems Biology.

[19]  N. Tolia,et al.  Duffy Antigen Expression in Erythroid Bone Marrow Precursor Cells of Genotypically Duffy Negative Individuals , 2018 .

[20]  O. Faye,et al.  Asymptomatic Plasmodium vivax infections among Duffy-negative population in Kedougou, Senegal , 2018, Tropical Medicine and Health.

[21]  Gabriel W. Rangel,et al.  Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. , 2018, Current opinion in microbiology.

[22]  D. Ndiaye,et al.  Molecular identification of Plasmodium species responsible for malaria reveals Plasmodium vivax isolates in Duffy negative individuals from southwestern Nigeria , 2018, Malaria Journal.

[23]  S. Meshnick,et al.  Plasmodium vivax Infections in Duffy-Negative Individuals in the Democratic Republic of the Congo. , 2018, The American journal of tropical medicine and hygiene.

[24]  Virander S. Chauhan,et al.  Malaria vaccine candidate based on Duffy-binding protein elicits strain transcending functional antibodies in a Phase I trial , 2018, npj Vaccines.

[25]  H. Curtidor,et al.  Plasmodium vivax in vitro continuous culture: the spoke in the wheel , 2018, Malaria Journal.

[26]  Seong-kyun Lee,et al.  Diversity pattern of Duffy binding protein sequence among Duffy-negatives and Duffy-positives in Sudan , 2018, Malaria Journal.

[27]  R. Pearson,et al.  Cryo-EM structure of an essential Plasmodium vivax invasion complex , 2018, Nature.

[28]  D. Serre,et al.  Genetic diversity in two Plasmodium vivax protein ligands for reticulocyte invasion , 2018, bioRxiv.

[29]  O. Doumbo,et al.  Plasmodium vivax Infections of Duffy-Negative Erythrocytes: Historically Undetected or a Recent Adaptation? , 2018, Trends in parasitology.

[30]  P. Sunnerhagen,et al.  Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics , 2018, Front. Cell. Infect. Microbiol..

[31]  Brian J. Smith,et al.  Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax , 2018, Science.

[32]  M. Fiegenbaum,et al.  Molecular basis of the Duffy blood group system. , 2018, Blood transfusion = Trasfusione del sangue.

[33]  Martina Moras,et al.  From Erythroblasts to Mature Red Blood Cells: Organelle Clearance in Mammals , 2017, Front. Physiol..

[34]  N. Tolia,et al.  DARC extracellular domain remodeling in maturating reticulocytes explains Plasmodium vivax tropism. , 2017, Blood.

[35]  M. Galinski,et al.  A large scale Plasmodium vivax- Saimiri boliviensis trophozoite-schizont transition proteome , 2017, PloS one.

[36]  Juliana M. Sá,et al.  Plasmodium vivax Infections over 3 Years in Duffy Blood Group Negative Malians in Bandiagara, Mali. , 2017, The American journal of tropical medicine and hygiene.

[37]  M. Patarroyo,et al.  Characterising PvRBSA: an exclusive protein from Plasmodium species infecting reticulocytes , 2017, Parasites & Vectors.

[38]  Yukio Nakamura,et al.  An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells , 2017, Nature Communications.

[39]  V. Vullo,et al.  Molecular evidence of Plasmodium vivax infection in Duffy negative symptomatic individuals from Dschang, West Cameroon , 2017, Malaria Journal.

[40]  A. Bigot,et al.  The hide and seek of Plasmodium vivax in West Africa: report from a large-scale study in Beninese asymptomatic subjects , 2016, Malaria Journal.

[41]  I. Gouado,et al.  An additional observation of Plasmodium vivax malaria infection in Duffy-negative individuals from Cameroon. , 2016, Journal of infection in developing countries.

[42]  A. Pain,et al.  Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasite Plasmodium knowlesi , 2016, Proceedings of the National Academy of Sciences.

[43]  D. Conway,et al.  Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi. , 2016, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[44]  Jianbing Mu,et al.  Role of Plasmodium vivax Duffy-binding protein 1 in invasion of Duffy-null Africans , 2016, Proceedings of the National Academy of Sciences.

[45]  H. S. Mohamed,et al.  Transmission of Plasmodium vivax in Duffy-negative individuals in central Sudan. , 2016, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[46]  Esther G. L. Koh,et al.  Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. , 2015, Blood.

[47]  M. Patarroyo,et al.  Determining the Plasmodium vivax VCG-1 strain blood stage proteome. , 2015, Journal of proteomics.

[48]  Aparup Das,et al.  Molecular Evidence of Plasmodium vivax Mono and Mixed Malaria Parasite Infections in Duffy-Negative Native Cameroonians , 2014, PloS one.

[49]  K. Haldar,et al.  Molecular typing reveals substantial Plasmodium vivax infection in asymptomatic adults in a rural area of Cameroon , 2014, Malaria Journal.

[50]  E. Miri-Moghaddam,et al.  Duffy blood group genotypes among malaria Plasmodium vivax patients of Baoulch population in Southeastern Iran. , 2014, Asian Pacific journal of tropical medicine.

[51]  N. Tolia,et al.  Red Blood Cell Invasion by Plasmodium vivax: Structural Basis for DBP Engagement of DARC , 2014, PLoS pathogens.

[52]  J. Palis Primitive and definitive erythropoiesis in mammals , 2013, Front. Physiol..

[53]  D. Serre,et al.  Whole Genome Sequencing of Field Isolates Reveals a Common Duplication of the Duffy Binding Protein Gene in Malagasy Plasmodium vivax Strains , 2013, PLoS neglected tropical diseases.

[54]  B. Mordmüller,et al.  Plasmodium vivax malaria in Duffy-negative individuals from Ethiopia. , 2013, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[55]  J. Guerreiro,et al.  Plasmodium vivax infection in Anajás, State of Pará: no differential resistance profile among Duffy-negative and Duffy-positive individuals , 2012, Malaria Journal.

[56]  C. King,et al.  Conserved and Variant Epitopes of Plasmodium vivax Duffy Binding Protein as Targets of Inhibitory Monoclonal Antibodies , 2012, Infection and Immunity.

[57]  Ankit K. Rochani,et al.  Clinical Proteomics of the Neglected Human Malarial Parasite Plasmodium vivax , 2011, PloS one.

[58]  Jetsumon Sattabongkot,et al.  Determination of the Plasmodium vivax schizont stage proteome. , 2011, Journal of proteomics.

[59]  C. Mendes,et al.  Duffy Negative Antigen Is No Longer a Barrier to Plasmodium vivax – Molecular Evidences from the African West Coast (Angola and Equatorial Guinea) , 2011, PLoS neglected tropical diseases.

[60]  Caroline W. Kabaria,et al.  The global distribution of the Duffy blood group , 2011, Nature communications.

[61]  Utpal Tatu,et al.  A glimpse into the clinical proteome of human malaria parasites Plasmodium falciparum and Plasmodium vivax , 2009, Proteomics. Clinical applications.

[62]  J. Baird,et al.  Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. , 2009, The Lancet. Infectious diseases.

[63]  I. Mueller,et al.  Strain-Specific Duffy Binding Protein Antibodies Correlate with Protection against Infection with Homologous Compared to Heterologous Plasmodium vivax Strains in Papua New Guinean Children , 2009, Infection and Immunity.

[64]  C. Chitnis,et al.  Plasmodium vivax Invasion of Human Erythrocytes Inhibited by Antibodies Directed against the Duffy Binding Protein , 2007, PLoS medicine.

[65]  J. Sattabongkot,et al.  Short-term in vitro culture of field isolates of Plasmodium vivax using umbilical cord blood. , 2007, Parasitology international.

[66]  J. Barnwell,et al.  Evidence for transmission of Plasmodium vivax among a duffy antigen negative population in Western Kenya. , 2006, The American journal of tropical medicine and hygiene.

[67]  A. G. Brevern,et al.  A structural model of a seven-transmembrane helix receptor: the Duffy antigen/receptor for chemokine (DARC). , 2005, Biochimica et biophysica acta.

[68]  W. Collins,et al.  Plasmodium ovale: Parasite and Disease , 2005, Clinical Microbiology Reviews.

[69]  J. Adams,et al.  Conserved residues in the Plasmodium vivax Duffy-binding protein ligand domain are critical for erythrocyte receptor recognition. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[70]  C. Chitnis,et al.  Epitope-Specific Humoral Immunity to Plasmodium vivax Duffy Binding Protein , 2003, Infection and Immunity.

[71]  C. King,et al.  Diversity and natural selection in Plasmodium vivax Duffy binding protein gene. , 2003, Molecular and biochemical parasitology.

[72]  N. Ferrand,et al.  Microsatellite variation and evolution of the human Duffy blood group polymorphism. , 2002, Molecular biology and evolution.

[73]  P. Michon,et al.  Duffy‐null promoter heterozygosity reduces DARC expression and abrogates adhesion of the P. vivax ligand required for blood‐stage infection , 2001, FEBS letters.

[74]  R. Rosenberg,et al.  Continuous in vitro propagation of the malaria parasite Plasmodium vivax. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[75]  C. Chitnis,et al.  Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion , 1994, The Journal of experimental medicine.

[76]  C. Chitnis,et al.  A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. , 1993, Science.

[77]  R. Sasaki,et al.  Establishment of an erythroid cell line (JK‐1) that spontaneously differentiates to red cells , 1990, Cancer.

[78]  G. Gaudernack,et al.  A new method for isolation of reticulocytes: positive selection of human reticulocytes by immunomagnetic separation. , 1990, Blood.

[79]  M. Adam,et al.  Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes , 1985, The Journal of cell biology.

[80]  W. A. Krotoski Discovery of the hypnozoite and a new theory of malarial relapse. , 1985, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[81]  N. Mohandas,et al.  Reticulocyte motility and form: studies on maturation and classification. , 1977, Blood.

[82]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[83]  L. Miller,et al.  The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. , 1976, The New England journal of medicine.

[84]  R. Sanger,et al.  The Duffy Blood Groups of New York Negroes: The Phenotype Fy (a−b−) , 1955, British journal of haematology.