A comparative view on the potential acting on an electron in a molecule and the electrostatic potential through the typical halogen bonds

This work considers the features of the electrostatic potential (ESP), and the potential acting on an electron in a molecule (PAEM) for the series of isolated dihalide molecules and for their molecular complexes. The joint analysis of these functions enriches the vision of atomic predispositions to the halogen bond formation and reveals details for their characterization. The account for the exchange‐correlation interaction in PAEM retains the specific anisotropy of the ESP, which is commonly used for the halogen bonding explanation within σ‐hole concept. Along the halogen bonds, the curvatures of PAEM and ESP functions are opposite. Being jointly mapped on the closed isosurfaces of the reduced density gradient, placed between bound atoms, they are significantly differed from the side facing the halogen atom and from the side looking at the electron donor atom. © 2017 Wiley Periodicals, Inc.

[1]  Timothy Clark,et al.  Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. , 2010, Physical chemistry chemical physics : PCCP.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  A.M.K. Müller,et al.  Explicit approximate relation between reduced two- and one-particle density matrices , 1984 .

[4]  Antonio Bauzá,et al.  Tetrel-bonding interaction: rediscovered supramolecular force? , 2013, Angewandte Chemie.

[5]  G. Cavallo,et al.  Naming Interactions from the Electrophilic Site , 2014 .

[6]  H. Basch On the interpretation of k-shell electron binding energy chemical shifts in molecules , 1970 .

[7]  Tian Lu,et al.  Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. , 2012, Journal of molecular graphics & modelling.

[8]  Pierangelo Metrangolo,et al.  Definition of the halogen bond (IUPAC Recommendations 2013) , 2013 .

[9]  V. Tsirelson,et al.  Atomic dipole polarization in charge-transfer complexes with halogen bonding. , 2013, Physical chemistry chemical physics : PCCP.

[10]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[11]  S. Matile,et al.  Anion Transport with Chalcogen Bonds. , 2016, Journal of the American Chemical Society.

[12]  Pratim K. Chattaraj,et al.  Chemical Reactivity , 2005 .

[13]  M. Schwartz Correlation of 1s binding energy with the average quantum mechanical potential at A nucleus , 1970 .

[14]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[15]  Peter Politzer,et al.  Chemical Applications of Atomic and Molecular Electrostatic Potentials: "Reactivity, Structure, Scattering, And Energetics Of Organic, Inorganic, And Biological Systems" , 2013 .

[16]  Peter Politzer,et al.  Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors , 2007, Journal of molecular modeling.

[17]  Dennis Sullivan,et al.  Firefly , 2012 .

[18]  Timothy Clark,et al.  σ-Holes: σ-Holes , 2013 .

[19]  P. Salvador,et al.  Overlap populations, bond orders and valences for fuzzy atoms , 2004 .

[20]  R. Bader,et al.  Spatial localization of the electronic pair and number distributions in molecules , 1975 .

[21]  Peter Politzer,et al.  Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems , 2001 .

[22]  Andrew Streitwieser,et al.  Electron Delocalization and the Fermi Hole , 1996 .

[23]  Zhong-Zhi Yang,et al.  Exploration of the potential acting on an electron within diatomic molecules , 2002 .

[24]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[25]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[26]  Shridhar R. Gadre,et al.  Electrostatics of Atoms and Molecules , 2001 .

[27]  J. Murray,et al.  σ-Hole bonding: a physical interpretation. , 2014, Topics in current chemistry.

[28]  E. Belokoneva,et al.  X-ray and Electron Diffraction Study of MgO , 1998 .

[29]  Á. M. Pendás,et al.  Emergent Scalar and Vector Fields in Quantum Chemical Topology , 2016 .

[30]  Xavier Fradera,et al.  The Lewis Model and Beyond , 1999 .

[31]  P. Luger,et al.  MolIso– a program for colour‐mapped iso‐surfaces , 2006 .

[32]  H. Kiani,et al.  Tuning of carbon bonds by substituent effects: an ab initio study , 2016 .

[33]  Julia Contreras-García,et al.  Revealing non-covalent interactions in solids: NCI plots revisited. , 2012, Physical chemistry chemical physics : PCCP.

[34]  Steve Scheiner,et al.  Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds , 2013 .

[35]  Significant evidence of C···O and C···C long-range contacts in several heterodimeric complexes of CO with CH3-X, should one refer to them as carbon and dicarbon bonds! , 2014, Physical chemistry chemical physics : PCCP.

[36]  V. Tsirelson,et al.  Precision electron diffraction structure analysis and its use in physics and chemistry of solids , 2001 .

[37]  Anthony C Legon,et al.  The halogen bond: an interim perspective. , 2010, Physical chemistry chemical physics : PCCP.

[38]  P. Popelier On Quantum Chemical Topology , 2016 .

[39]  Zhong-Zhi Yang,et al.  Investigation of the distinction between van der Waals interaction and chemical bonding based on the PAEM‐MO diagram , 2014, J. Comput. Chem..

[40]  Pierangelo Metrangolo,et al.  The Halogen Bond , 2016, Chemical reviews.

[41]  Kevin E. Riley,et al.  σ-Holes, π-holes and electrostatically-driven interactions , 2012, Journal of Molecular Modeling.

[42]  E. Davidson,et al.  Evaluation of a characteristic atomic radius by an ab initio method , 1997 .

[43]  P. Beer,et al.  Halogen Bonding in Supramolecular Chemistry. , 2008, Chemical reviews.

[44]  A. Frontera,et al.  Tetrel Bonding Interactions. , 2016, Chemical record.

[45]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[46]  I. Hargittai Gas-Phase Electron Diffraction for Molecular Structure Determination , 2006 .

[47]  Peter Politzer,et al.  The electrostatic potential: an overview , 2011 .

[48]  Gebo Pan,et al.  Hierarchical flower-shaped organic NPB architectures with a durable water-repellent property , 2012 .

[49]  P. Salvador,et al.  Comparison of the AIM delocalization index and the Mayer and fuzzy atom bond orders. , 2005, The journal of physical chemistry. A.

[50]  D. Werz,et al.  Theoretical investigations on heteronuclear chalcogen-chalcogen interactions: on the nature of weak bonds between chalcogen centers. , 2007, Inorganic chemistry.

[51]  F. Escudero,et al.  Atoms in molecules , 1982 .

[52]  V. Tsirelson,et al.  Halogen Bonding and Other Iodine Interactions in Crystals of Dihydrothiazolo(oxazino)quinolinium Oligoiodides from the Electron-Density Viewpoint , 2014 .

[53]  Timothy Clark,et al.  Halogen bonding: the σ-hole , 2007 .

[54]  Christian B. Hübschle,et al.  MoleCoolQt – a molecule viewer for charge-density research , 2010, Journal of applied crystallography.

[55]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[56]  Peter Politzer,et al.  The fundamental nature and role of the electrostatic potential in atoms and molecules , 2002 .

[57]  A. Frontera,et al.  π–hole interactions at work: crystal engineering with nitro-derivatives , 2017 .

[58]  R. Lucchese,et al.  CMM-RS potential for characterization of the properties of the halogen-bonded OC-Cl2 complex, and a comparison with hydrogen-bonded OC-HCl. , 2012, The journal of physical chemistry. A.

[59]  R. Mcweeny,et al.  Methods Of Molecular Quantum Mechanics , 1969 .

[60]  Yu Zhang,et al.  Chalcogen bond: a sister noncovalent bond to halogen bond. , 2009, The journal of physical chemistry. A.

[61]  Peter Politzer,et al.  A predicted new type of directional noncovalent interaction , 2007 .