On a separation theorem for generalized eigenvalues and a problem in the analysis of sample surveys

Abstract We obtain usable bounds for the asymptotic percentage points of chi-squared tests of fit for log-linear models fitted to contingency tables estimated from survey data, by applying some new separation inequalities for the generalized eigenvalues of a matrix X′AX with respect to a matrix X′BX , when both the matrices A and B are nonnegative definite. We also present some historical remarks on the Poincare separation theorem for eigenvalues from which our new inequalities are shown to follow.

[1]  P. Altham Discrete variable analysis for individuals grouped into families , 1976 .

[2]  A. Scott,et al.  Chi-squared Tests with Survey Data , 1980 .

[3]  S. Haberman,et al.  The analysis of frequency data , 1974 .

[4]  C. Radhakrishna Rao,et al.  Separation theorems for singular values of matrices and their applications in multivariate analysis , 1979 .

[5]  J. Durbin,et al.  Testing for serial correlation in least squares regression. II. , 1950, Biometrika.

[6]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[7]  Social Class and Self-Reported Delinquent Acts among Swiss Boys , 1973 .

[8]  Stephen E. Fienberg,et al.  The analysis of cross-classified categorical data , 1980 .

[9]  W. F. Gross A Note on “Chi‐Squared Tests with Survey Data” , 1984 .

[10]  L. Mirsky,et al.  Introduction to Linear Algebra , 1965, The Mathematical Gazette.

[11]  H. Hamburger,et al.  Linear transformations in n-dimensional vector space : an introduction to the theory of Hilbert space , 1953, The Mathematical Gazette.

[12]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[13]  A. Scott,et al.  The Analysis of Categorical Data from Complex Sample Surveys: Chi-Squared Tests for Goodness of Fit and Independence in Two-Way Tables , 1981 .

[14]  R. Courant,et al.  Methoden der Mathematischen Physik: Erster Band , 1931 .

[15]  R. Courant,et al.  Methoden der mathematischen Physik , .

[16]  Introduction mathématique aux théories quantiques , 1936 .

[17]  G. Koch,et al.  Categorical Data Analysis: Some Reflections on the Log Linear Model and Logistic Regression. Part I: Historical and Methodological Overview* , 1981 .

[18]  F. Gantmacher,et al.  Applications of the theory of matrices , 1960 .

[19]  Shizuhiko Nishisato,et al.  Some results on proper eigenvalues and eigenvectors with applications to scaling , 1979 .

[20]  Calyampudi R. Rao,et al.  Simultaneous reduction of a pair of quadratic forms , 1968 .

[21]  Henri Poincaré,et al.  Sur les Equations aux Derivees Partielles de la Physique Mathematique , 1890 .

[22]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[23]  H. Solomon,et al.  Distribution of a Sum of Weighted Chi-Square Variables , 1977 .

[24]  Ivan D Chase A COMPARISON OF MEN'S AND WOMEN'S INTERGENERATIONAL MOBILITY IN THE UNITED STATES* , 1975 .

[25]  I. Fellegi Approximate Tests of Independence and Goodness of Fit Based on Stratified Multistage Samples , 1980 .

[26]  F. R. Gantmakher The Theory of Matrices , 1984 .

[27]  E. Bedrick Adjusted chi-squared tests for cross-classified tables of survey data , 1983 .

[28]  R. Courant,et al.  Zur Theorie der kleinen Schwingungen , 2022 .

[29]  J. Darroch,et al.  Categorical Data Analysis: Some Reflections on the Log Linear Model and Logistic Regression. Part II: Data Analysis , 1982 .

[30]  Calyampudi Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications , 1967 .

[31]  Gary G. Koch,et al.  Strategies in the Multivariate Analysis of Data from Complex Surveys , 1975 .

[32]  A. Scott,et al.  On Chi-Squared Tests for Multiway Contingency Tables with Cell Proportions Estimated from Survey Data , 1984 .

[33]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[34]  G. Styan,et al.  Equalities and Inequalities for Ranks of Matrices , 1974 .