Laser Doppler velocimetry using powerful solid-state light sources

Opto-electronic measurement techniques are well established in fluid flow investigations. Their advantages are that they are non-intrusive, provide highly accurate measurement data and have fast response times. Laser Doppler velocimetry (LDV) is one of the most important methods for velocity measurements with high spatial and temporal resolution. Diode lasers and diode-pumped solid-state lasers as well as glass fibres and micro-optics are employed to an increasing extent. Particularly, the development of solid-state lasers proceeds rapidly. New lasers with improved properties such as high-power fundamental-mode emission make it possible to develop enhanced LDV sensor heads. This may open up new fields of application, for example in medicine and aerospace technology. The aim of this review is to describe the present state-of-the-art in LDV and to demonstrate how new laser concepts can still contribute to the development of new, improved LDV sensors. For that purpose, solid-state lasers such as diode lasers and diode-pumped solid-state lasers are introduced, and concepts of communication engineering for accomplishing directional multi-component velocity measurements are discussed. Also, velocity measurements with high spatial resolution are reported. A conclusive overview of applications and an outlook on future challenges are outlined.

[1]  Andreas Tünnermann,et al.  All fibre laser system with 0.1 W output power in blue spectral range , 1997 .

[2]  A Tünnermann,et al.  62-W cw TEM(00) Nd:YAG laser side-pumped by fiber-coupled diode lasers. , 1996, Optics letters.

[3]  G. Bonfrate,et al.  Single-frequency MOPA Er/sup 3+/ DBR fiber laser for WDM digital telecommunication systems , 1998, IEEE Photonics Technology Letters.

[4]  Lars Büttner,et al.  Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens. , 2005, Applied optics.

[5]  F. Durst,et al.  Statistical interpretation of the turbulent dissipation rate in wall-bounded flows , 1995, Journal of Fluid Mechanics.

[6]  Egon Hassel,et al.  Laser diagnostics for studies of turbulent combustion , 2000 .

[7]  J W Czarske Method for analysis of the fundamental measuring uncertainty of laser Doppler velocimeters. , 1996, Optics letters.

[8]  R. Menzies,et al.  Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit. , 1986, Applied optics.

[9]  Lars Büttner,et al.  Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution , 2002 .

[10]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[11]  Battery-driven miniature LDA-system with semiconductor laser diode , 1988 .

[12]  T. M. Quist,et al.  INJECTION LUMINESCENT PUMPING OF CaF2:U3+ WITH GaAs DIODE LASERS , 1964 .

[13]  R. Byer,et al.  Monolithic, unidirectional single-mode Nd:YAG ring laser. , 1985, Optics letters.

[14]  Noboru Fujiwara,et al.  Development of fiber optic laser Doppler velocimeter for measurement of local blood velocity , 1993, Other Conferences.

[15]  Andreas Tünnermann,et al.  Visible double-clad upconversion fibre laser , 1998 .

[16]  A Tünnermann,et al.  Amplitude and frequency stability of a diode-pumped Nd:YAG laser operating at a single-frequency continuous-wave output power of 20 W. , 1995, Optics letters.

[17]  David A. Jackson,et al.  Miniature solid-state directional laser Doppler velocimeter , 1982 .

[18]  H. Herzig Micro-Optics : Elements, Systems And Applications , 1997 .

[19]  James F. Meyers,et al.  Development of Doppler global velocimetry as a flow diagnostics tool , 1995 .

[20]  A. Brillet,et al.  A REVIEW OF GRAVITATIONAL WAVE DETECTORS , 1997 .

[21]  P. Roca i Cabarrocas,et al.  Optical and electronic properties of hydrogenated amorphous silicon films deposited by square-wave modulated RF discharges of silane-he mixtures , 1994 .

[22]  V. Strunck,et al.  The application of quadrature demodulation techniques for the investigation of flows , 1996 .

[23]  A novel tunable dual-wavelength external-cavity laser diode array and its applications , 1996 .

[24]  Ikuo Ihara,et al.  Ultrasonic probes for high temperature immersion measurements , 2001 .

[25]  Michalis N. Zervas,et al.  Multiple wavelength all-fibre DFB lasers , 2000 .

[26]  A. Tünnermann,et al.  Directional discrimination in laser Doppler anemometry (LDA) without frequency shifting using twinned optical fibres in the receiving optics , 1998 .

[27]  Helmut Huegel,et al.  Solid state thin disk laser , 1998, International Symposium on High Power Laser Systems and Applications.

[28]  A. Marchant Optical Recording: A Technical Overview , 1990 .

[29]  F. Durst,et al.  Measurement accuracy of semiconductor LDA systems , 1990 .

[30]  Adolf Giesen,et al.  Scalable concept for diode-pumped high-power solid-state lasers , 1994 .

[31]  S. Schiller,et al.  1.1-W single-frequency 532-nm radiation by second-harmonic generation of a miniature Nd:YAG ring laser. , 1996, Optics letters.

[32]  H. Nishihara,et al.  Use of a laser diode and an optical fiber for a compact laser-Doppler velocimeter. , 1984, Optics letters.

[33]  Zhang Yinping,et al.  A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials , 1999 .

[34]  F. Durst,et al.  Wall shear stress determination from near-wall mean velocity data in turbulent pipe and channel flows , 1996 .

[35]  R. Conroy,et al.  Microchip Nd:vanadate lasers at 1342 and 671nm. , 1997, Optics letters.

[36]  Cameron Tropea,et al.  In-flight velocity measurements using laser Doppler anemometry , 1994 .

[37]  Jürgen Czarske Laser Doppler velocity profile sensor using a chromatic coding , 2001 .

[38]  Stefan Becker,et al.  A large-scale matched index of refraction flow facility for LDA studies around complex geometries , 2001 .

[39]  J. D. Kingsley,et al.  Coherent Light Emission From GaAs Junctions , 1962 .

[40]  Renshi Sawada,et al.  Integrated microlaser Doppler velocimeter , 1999 .

[41]  Cameron Tropea,et al.  Estimation of turbulent velocity spectra from laser Doppler data , 2000 .

[42]  H. V. Maanen Retrieval of turbulence and turbulence properties from randomly sampled laser-Doppler anemometry data with noise , 1999 .

[43]  Juergen Czarske,et al.  Application of diffraction gratings in the laser Doppler velocimetry (LDV) , 1993, International Commission for Optics.

[44]  P. O. Witze,et al.  Evaluation of the gaussian beam model for prediction of LDV fringe fields , 1996 .

[45]  Klaus Gersten,et al.  Boundary-Layer Theory - 8th Revised and Enlarged Edition , 2000 .

[46]  J W Bilbro,et al.  Airborne Doppler lidar measurements. , 1986, Applied optics.

[47]  F. Durst,et al.  Advantages of UV Lasers in Laser and Phase Doppler Anemometers for Submicrometer Particles , 1997 .

[48]  B. Ruck,et al.  Limited accuracy of turbulence measurement in laser Doppler anemometry , 1993, Other Conferences.

[49]  A. N. Kolmogorov Equations of turbulent motion in an incompressible fluid , 1941 .

[50]  A. L. Weijers,et al.  Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows. , 1994, Applied optics.

[51]  Johannes Heinze,et al.  Doppler Global Velocimetry in flames using a newly developed, frequency stabilized, tunable, Long pulse, Nd: YAG Laser , 2000 .

[52]  Stefan Becker,et al.  Laser Doppler Anemometer for In-Flight Velocity Measurements on Airplane Wings , 1999 .

[53]  Andreas Tünnermann,et al.  Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts , 1995 .

[54]  K. A. Shinpaugh,et al.  Signal-processing techniques for low signal-to-noise ratio laser Doppler velocimetry signals , 1992 .

[55]  A. Tünnermann,et al.  Intensity stabilised Nd:YAG ring laser with 1.5 W single-frequency output power at 1.357 /spl mu/m , 1997 .

[56]  H. Müller,et al.  Two-dimensional directional fiver-optic laser Doppler anemometer based on heterodyning by means of a chirp frequency modulated Nd: YAG miniature ring laser , 1996 .

[57]  A. Tünnermann,et al.  All-solid-state neodymium-based single-frequency master-oscillator fiber power-amplifier system emitting 5.5 W of radiation at 1064 nm. , 1999, Optics letters.

[58]  N. Matuschek,et al.  Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics. , 1999, Science.

[59]  P C McLeod,et al.  Skin friction drag measurements by LDV. , 1981, Applied optics.

[60]  Farhad Hakimi,et al.  DOUBLE CLAD, OFFSET CORE Nd FIBER LASER , 1988 .

[61]  R. Newman,et al.  Excitation of the Nd3+ Fluorescence in CaWO4 by Recombination Radiation in GaAs , 1963 .

[62]  Peter Aufmuth,et al.  Auftakt zum Konzert der Sterne , 2002 .

[63]  W Stork,et al.  Diffractive beam splitter for laser Doppler velocimetry. , 1992, Optics letters.

[64]  F. Köpp Doppler lidar investigation of wake vortex transport between closely spaced parallel runways , 1994 .

[65]  D. Dopheide,et al.  Fibre Optical Multicomponent LDA-System Using the Optical Frequency Difference of Powerful DBR-Laser Diodes , 1997 .

[66]  M Wilkinson Microsystems: applications in catheters and endoscopes. , 2000, Medical device technology.

[67]  David F. Welch,et al.  1.1 W CW, diffraction-limited operation of a monolithically integrated flared-amplifier master oscillator power amplifier , 1992 .

[68]  Martin Brede Measurement of turbulence production in the cylinder separated shear-layer using event-triggered Laser-Doppler anemometry , 2004 .

[69]  J. Jones,et al.  Monomode fibre optic sensors , 1993 .

[70]  J. Czarske,et al.  Passive directional discrimination in laser-Doppler anemometry by the two-wavelength quadrature homodyne technique. , 2003, Applied optics.

[71]  H. Nobach,et al.  A refined reconstruction-based correlation estimator for two-channel, non-coincidence laser Doppler anemometry , 1998 .

[72]  Erik Zucker,et al.  110 W fibre laser , 1999 .

[73]  J. Czarske,et al.  Quadrature demodulation technique used in laser Doppler velocimetry , 1998 .

[74]  Andreas Tünnermann,et al.  Continuously tunable 0.5 W single-frequency diode laser source , 1998 .

[75]  Β. RUCK,et al.  Laser-Doppler-Anemometer auf der Basis von Gradientenfasern / Laser-Doppler anemometer on the basis of graded index fibers , 1983 .

[76]  F. Durst Review—Combined Measurements of Particle Velocities, Size Distributions, and Concentrations , 1982 .

[77]  M. Martinelli,et al.  Distributed laser Doppler velocimeter. , 1991 .

[78]  E. Snitzer,et al.  Neodymium Glass Laser , 1964 .

[79]  L. Drain The Laser Doppler Technique , 1980 .

[80]  Andreas Tünnermann,et al.  Visible upconversion lasers in praseodymium-ytterbium-doped fibers , 1999 .

[81]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[82]  Robert Louis Bayt,et al.  Analysis, Fabrication and Testing of a MEMS-based Micropropulsion System , 1999 .

[83]  Jürgen Czarske Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals , 2001 .

[84]  Helmut Eckelmann,et al.  Einführung in die Strömungsmeßtechnik , 1997 .

[85]  Cameron Tropea,et al.  An adaptive spectral peak interpolation with application to LDA signal processing , 1991 .

[86]  Helmut Többen,et al.  Experimental and numerical results of optical preamplification in a laser Doppler anemometer receiving head , 2000, IEEE Trans. Instrum. Meas..

[87]  M Stieglmeier,et al.  Mobile fiber-optic laser Doppler anemometer. , 1992, Applied optics.

[88]  H. Nobach,et al.  Measurement of acceleration using the laser Doppler technique , 2002 .

[89]  S. Heinemann,et al.  A model describing the single and multiple line spectra of tunable microcrystal lasers , 1993 .

[90]  A. K. Tieu,et al.  Measurements in microscopic flow with a solid-state LDA , 1995 .

[91]  Julian D. C. Jones,et al.  Design of fiber optic beam delivery system for particle image velocimetry , 1993, Other Conferences.

[92]  C. Meinhart,et al.  The flow structure inside a microfabricated inkjet printhead , 2000, Journal of Microelectromechanical Systems.

[93]  Hiroshi Ito,et al.  Multipoint Sensing Laser Doppler Velocimetry Based on Laser Diode Frequency Modulation , 1996 .

[94]  Cameron Tropea,et al.  Laser Doppler anemometry: recent developments and future challenges , 1995 .

[95]  Walter Koechner,et al.  Solid-State Laser Engineering , 1976 .

[96]  S. Wereley,et al.  Micron-Resolution Velocimetry Techniques , 2000 .

[97]  J. Czarske,et al.  Multi-mode fibre laser Doppler anemometer (LDA) with high spatial resolution for the investigation of boundary layers , 2004 .

[98]  Shuji Nakamura,et al.  InGaN-based blue laser diodes , 1997 .

[99]  Jürgen Czarske,et al.  Directional achromatic heterodyne fiber laser Doppler anemometer , 1999 .

[100]  SemIh M. Ölçmen,et al.  An experimental study of a three-dimensional pressure-driven turbulent boundary layer , 1995 .

[101]  Upconversion process creates compact blue/green lasers , 1993 .

[102]  A. Kersey,et al.  Solid state and fibre optic laser doppler velocimeters , 1984 .

[103]  Y. Yeh,et al.  Localized fluid flow measurements with an He-Ne laser spectrometer , 1964 .

[104]  F. Durst,et al.  Faseroptische Laser-Doppler- Anemometer für die industrielle Strömungsmessung / Fiberoptic laser-Doppler anemometer for industrial flow measurement , 1986 .

[105]  Juergen Czarske,et al.  Heterodyne interferometer using a novel two-frequency Nd:YAG laser , 1994 .

[106]  J. Czarske Chirp heterodyne laser Doppler velocimeter using a powerful fibre-coupled green laser , 2001 .

[107]  D. Dopheide,et al.  Power and Sensitivity Improvement of LDA-Systems by Fiber Amplifiers , 1997 .

[108]  C. Egbers,et al.  Estimates on diagnostic methods for investigations of thermal convection between spherical shells in space , 1999 .

[109]  H. Müller,et al.  Two-Component Directional Laser Doppler Anemometer Based on a Frequency Modulated Nd: YAG Ring Laser and Fiber Delay Lines , 1997 .

[110]  Koichi Hishida,et al.  A Flow Structure at Reattachment Region of a Two-Dimensional Backward-Facing Step by Using Advanced Multi-Point LDV , 2000 .

[111]  T. Hänsch,et al.  Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity , 1980 .

[112]  Alan J. Rogers,et al.  Distributed optical-fibre sensing , 1999 .

[114]  M. Borys,et al.  Simultaneous measurement of velocity and particle size profiles with the reference beam technique , 2002 .

[115]  N. Bobroff Recent advances in displacement measuring interferometry , 1993 .

[116]  Duncan P. Hand,et al.  Fibre optic beam delivery system for high peak power laser PIV illumination , 1999 .

[117]  B L Petrig,et al.  Retinal laser Doppler velocimetry: toward its computer-assisted clinical use. , 1988, Applied optics.

[118]  Lars Büttner,et al.  Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing. , 2005, Applied optics.

[119]  V. Strunck,et al.  Miniaturized multicomponent laser Doppler anemometers using high-frequency pulsed diode lasers and new electronic signal acquisition systems , 1990 .

[120]  R. Schodl,et al.  In-flight Laser Anemometry for Aerodynamic Investigations on an Aircraft , 1997 .

[121]  N. Park,et al.  24-line multiwavelength operation of erbium-doped fiber-ring laser , 1996, IEEE Photonics Technology Letters.

[122]  Michael Fischer,et al.  Reynolds number effects in the near-wall region of turbulent channel flows , 2001 .

[123]  A. Tünnermann,et al.  High-power cw neodymium-doped fiber laser operating at 9.2 W with high beam quality. , 1995, Optics letters.

[124]  Jürgen Czarske,et al.  A multimode-fibre laser-Doppler anemometer for highly spatially resolved velocity measurements using low-coherence light , 2001 .