Detection of random signals in Gaussian mixture noise

A locally optimal detection algorithm for random signals in dependent noise is derived and applied to complex valved Gaussian mixture noise (GMN). The algorithm is modified so that it will detect signals that are not vanishingly small. The resulting detector is essentially a weighted sum of power detectors-the power detector is the locally optimal detector for random signals in Gaussian noise. The performance of the power detector and the locally optimal detector in GMN are compared using simulated and theoretical ROC curves. Additionally, the signal gain of the mixture detector relative to the power detector is calculated, for a fixed false alarm rate, as a function of the mixture parameters. The probability of detection of the mixture detector is also calculated, for fixed parameters and a fixed false alarm rate, as a function of the parameter estimation error.<<ETX>>

[1]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[2]  Robert N. McDonough,et al.  Detection of signals in noise , 1971 .

[3]  Dennis R. Powell,et al.  CLASS A MODELING OF OCEAN ACOUSTIC NOISE PROCESSES , 1989 .

[4]  H. Vincent Poor,et al.  Parameter estimation for Middleton Class A interference processes , 1989, IEEE Trans. Commun..

[5]  David Middleton,et al.  Topics in Communication Theory , 1965 .

[6]  C. Helstrom,et al.  Statistical theory of signal detection , 1968 .

[7]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .

[8]  A. F. Gualtierotti,et al.  Likelihood ratios and signal detection for nonGaussian processes , 1986 .

[9]  J. W. Bond,et al.  A geometric interpretation of adaptive locally optimum processing , 1991, MILCOM 91 - Conference record.

[10]  Stuart C. Schwartz,et al.  Robust detection of a known signal in nearly Gaussian noise , 1971, IEEE Trans. Inf. Theory.

[11]  Andreas M. Maras,et al.  Locally optimum Bayes detection in ergodic Markov noise , 1994, IEEE Trans. Inf. Theory.

[12]  J. Thomas,et al.  Locally optimum detection of discrete‐time stochastic signals in non‐Gaussian noise , 1978 .

[13]  David Middleton,et al.  Statistical-Physical Models of Electromagnetic Interference , 1977, IEEE Transactions on Electromagnetic Compatibility.

[14]  Stuart C. Schwartz,et al.  Underwater noises: Statistical modeling, detection, and normalization , 1988 .

[15]  J. Conway,et al.  Functions of a Complex Variable , 1964 .

[16]  R. Tapia,et al.  Nonparametric Function Estimation, Modeling, and Simulation , 1987 .

[17]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[18]  Stuart C. Schwartz,et al.  Comparison of adaptive and robust receivers for signal detection in ambient underwater noise , 1989, IEEE Trans. Acoust. Speech Signal Process..

[19]  D. Stein STATISTICAL CHARACTERISTICS OF MOVING ACOUSTIC SOURCES IN OCEAN WAVEGUIDES , 1995 .

[20]  H. Vincent Poor,et al.  Efficient estimation of Class A noise parameters via the EM algorithm , 1991, IEEE Trans. Inf. Theory.

[21]  S. Kassam Signal Detection in Non-Gaussian Noise , 1987 .

[22]  A. Griffiths,et al.  Design of a Sanguine Noise Processor Based Upon World-Wide Extremely Low Frequency (ELF) Recordings , 1974, IEEE Trans. Commun..

[23]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[24]  S.A. Kassam,et al.  Robust techniques for signal processing: A survey , 1985, Proceedings of the IEEE.

[25]  L. Berry Understanding Middleton's Canonical Formula for Class a Noise , 1981, IEEE Transactions on Electromagnetic Compatibility.

[26]  David Middleton Canonically optimum threshold detection , 1966, IEEE Trans. Inf. Theory.

[27]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .