The mathematics of superoscillations

In the past 50 years, quantum physicists have discovered, and experimentally demonstrated, a phenomenon which they termed superoscillations. Aharonov and his collaborators showed that superoscillations naturally arise when dealing with weak values, a notion that provides a fundamentally different way to regard measurements in quantum physics. From a mathematical point of view, superoscillating functions are a superposition of small Fourier components with a bounded Fourier spectrum, which result, when appropriately summed, in a shift that can be arbitrarily large, and well outside the spectrum. Purpose of this work is twofold: on one hand we provide a self-contained survey of the existing literature, in order to offer a systematic mathematical approach to superoscillations; on the other hand, we obtain some new and unexpected results, by showing that superoscillating sequences can be seen of as solutions to a large class of convolution equations and can therefore be treated within the theory of Analytically Uniform spaces. In particular, we will also discuss the persistence of the superoscillatory behavior when superoscillating sequences are taken as initial values of the Schr\"odinger equation and other equations.

[1]  D. A. Lutz,et al.  On the Borel summability of divergent solutions of the heat equation , 1999, Nagoya Mathematical Journal.

[2]  Ultrasensitive phase estimation with white light , 2011, 1102.4902.

[3]  Suter "Weak measurements" and the "quantum time-translation machine" in a classical system. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[4]  C. Berenstein,et al.  Complex Analysis and Convolution Equations , 1993 .

[5]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[6]  B. A. Taylor,et al.  A new look at interpolation theory for entire functions of one variable , 1979 .

[7]  O. Zilberberg,et al.  Charge sensing amplification via weak values measurement. , 2010, Physical review letters.

[8]  Dennis Gabor,et al.  Theory of communication , 1946 .

[9]  Daniele C. Struppa,et al.  Some mathematical properties of superoscillations , 2011 .

[10]  Dae Gwan Lee,et al.  Superoscillations of Prescribed Amplitude and Derivative , 2014, IEEE Transactions on Signal Processing.

[11]  Onur Hosten,et al.  Observation of the Spin Hall Effect of Light via Weak Measurements , 2008, Science.

[12]  S. Mallat A wavelet tour of signal processing , 1998 .

[13]  J. Tollaksen,et al.  Color transparency in QCD and post-selection in quantum mechanics , 2008 .

[14]  Sandu Popescu,et al.  Evolution of quantum superoscillations, and optical superresolution without evanescent waves , 2006 .

[15]  M. Payne,et al.  Linear optics implementation of weak values in Hardy's paradox (4 pages) , 2004, quant-ph/0408153.

[16]  Yakir Aharonov,et al.  Quantum Paradoxes: Quantum Theory for the Perplexed , 2005 .

[17]  C. Simon,et al.  Measuring small longitudinal phase shifts: weak measurements or standard interferometry? , 2009, Physical review letters.

[18]  Michael V Berry,et al.  Evanescent and real waves in quantum billiards and Gaussian beams , 1994 .

[19]  Mark R. Dennis,et al.  Natural superoscillations in monochromatic waves in D dimensions , 2009 .

[20]  B. Malgrange Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution , 1956 .

[21]  B. A. Taylor,et al.  Interpolation problems in Cn with applications to harmonic analysis , 1980 .

[22]  D. Struppa,et al.  Superoscillating sequences as solutions of generalized Schrödinger equations , 2015 .

[23]  Jari Lindberg,et al.  Mathematical concepts of optical superresolution , 2012 .

[24]  L. Ehrenpreis,et al.  Solutions of Some Problems of Division: Part III. Division in the Spaces, D , H, Q A , O , 1956 .

[25]  A. Parks,et al.  Observation and measurement of an optical Aharonov–Albert–Vaidman effect , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  Y. Aharonov,et al.  New Insights on Time-Symmetry in Quantum Mechanics , 2007, 0706.1232.

[27]  C. Cahn,et al.  On the sampling the zeros of bandwidth limited signals , 1958, IRE Trans. Inf. Theory.

[28]  Vaidman,et al.  Properties of a quantum system during the time interval between two measurements. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[29]  T. Cheon,et al.  Weak value expansion of quantum operators and its application in stochastic matrices , 2013, 1306.4767.

[30]  D. Struppa,et al.  Quantum harmonic oscillator with superoscillating initial datum , 2014, 1411.4112.

[31]  David J. Starling,et al.  Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values , 2009, 0910.2410.

[32]  Experimental realization of the quantum box problem , 2003, quant-ph/0310091.

[33]  Fast light, slow light, and phase singularities: a connection to generalized weak values. , 2003, Physical review letters.

[34]  F. Smithies Linear Operators , 2019, Nature.

[35]  Sandu Popescu,et al.  A time-symmetric formulation of quantum mechanics , 2010 .

[36]  D. Struppa,et al.  Evolution of superoscillatory data , 2014 .

[37]  G. Winskel What Is Discrete Mathematics , 2007 .

[38]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[39]  Johannes Courtial,et al.  Measurement of the light orbital angular momentum spectrum using an optical geometric transformation , 2011 .

[40]  Y. Aharonov,et al.  Quantum interference experiments, modular variables and weak measurements , 2009, 0910.4227.

[41]  C. DeWitt-Morette,et al.  Techniques and Applications of Path Integration , 1981 .

[42]  Vedran Dunjko,et al.  Quantum speedup for active learning agents , 2014, 1401.4997.

[43]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[44]  A. Matzkin,et al.  Observation of a quantum Cheshire Cat in a matter-wave interferometer experiment , 2013, Nature Communications.

[45]  Mark R. Dennis,et al.  Superoscillation in speckle patterns. , 2008, Optics letters.

[46]  Popescu,et al.  Perturbative induction of vector potentials. , 1990, Physical review letters.

[47]  V. Palamodov,et al.  Linear Differential Operators with Constant Coefficients , 1970 .

[48]  Ognyan Oreshkov,et al.  Weak measurements are universal. , 2005, Physical review letters.

[49]  Michael Robert Dennis,et al.  Weak value distributions for spin 1/2 , 2011 .

[50]  J. Lebowitz,et al.  TIME SYMMETRY IN THE QUANTUM PROCESS OF MEASUREMENT , 1964 .

[51]  I. Gel'fand,et al.  Integration in Functional Spaces and its Applications in Quantum Physics , 1960 .

[52]  R. Feynman,et al.  Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .

[53]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[54]  Andrew G. White,et al.  Observation of topologically protected bound states in photonic quantum walks , 2011 .

[55]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[56]  Yong-Sheng Zhang,et al.  Experimental demonstration of a method to realize weak measurement of the arrival time of a single photon , 2006 .

[57]  D. Struppa,et al.  On the Cauchy problem for the Schrödinger equation with superoscillatory initial data , 2013 .

[58]  H M Wiseman,et al.  Measurement of quantum weak values of photon polarization. , 2005, Physical review letters.

[59]  李幼升,et al.  Ph , 1989 .

[60]  David J. Starling,et al.  Precision frequency measurements with interferometric weak values , 2010, 1101.1464.

[61]  C. Berenstein,et al.  Dirichlet Series and Convolution Equations , 1988 .

[62]  David J. Starling,et al.  Ultrasensitive beam deflection measurement via interferometric weak value amplification. , 2009, Physical review letters.

[63]  D. Struppa The fundamental principle for systems of convolution equations , 1983 .

[64]  L. Cooper,et al.  FOURIER ANALYSIS IN SEVERAL COMPLEX VARIABLES , 1972 .

[65]  D. Bohm,et al.  Time in the Quantum Theory and the Uncertainty Relation for Time and Energy , 1961 .

[66]  Aephraim M. Steinberg,et al.  A double-slit ‘which-way’ experiment on the complementarity–uncertainty debate , 2007, 0706.3966.

[67]  W. Balser Multisummability of Formal Power Series Solutions of Partial Differential Equations with Constant Coefficients , 2004 .

[68]  D. Struppa,et al.  On Some Operators Associated to Superoscillations , 2013 .

[69]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[70]  Masato Koashi,et al.  Direct observation of Hardy's paradox by joint weak measurement with an entangled photon pair , 2008, 0811.1625.

[71]  Aephraim M. Steinberg,et al.  Experimental joint weak measurement on a photon pair as a probe of Hardy's paradox. , 2008, Physical review letters.

[72]  Y. Aharonov,et al.  The Two-State Vector Formalism of Quantum Mechanics , 2002 .

[73]  Ritchie,et al.  Realization of a measurement of a "weak value" , 1991, Physical review letters.

[74]  L. Vaidman,et al.  Weak measurement of photon polarization , 1990 .

[75]  Werner Balser,et al.  Summability of Formal Power-Series Solutions of Partial Differential Equations with Constant Coefficients , 2002 .

[76]  A. Requicha,et al.  The zeros of entire functions: Theory and engineering applications , 1980, Proceedings of the IEEE.

[77]  Akira Kaneko Introduction to hyperfunctions , 1988 .

[78]  Michael Beny,et al.  Faster than Fourier , 2017 .

[79]  Benni Reznik,et al.  Revisiting Hardy's Paradox: Counterfactual Statements, Real Measurements, Entanglement and Weak Values , 2001 .

[80]  Takuya Kitagawa,et al.  Exploring topological phases with quantum walks , 2010, 1003.1729.

[81]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[82]  Sampling Weak Values: A Non-Linear Bayesian Model for Non-Ideal Quantum Measurements , 2003, quant-ph/0306082.

[83]  Vaidman,et al.  Adiabatic Measurements on Metastable Systems. , 1996, Physical review letters.

[84]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[85]  M. Berry,et al.  Pointer supershifts and superoscillations in weak measurements , 2012 .

[86]  Howard Mark Wiseman,et al.  Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation , 2002 .

[87]  Dae Gwan Lee,et al.  Superoscillations with Optimal Numerical Stability , 2014, IEEE Signal Processing Letters.

[88]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[89]  Achim Kempf,et al.  Unusual properties of superoscillating particles , 2004 .

[90]  Weak value measurement with an incoherent measuring device , 2010 .

[91]  D. Struppa,et al.  Superoscillation phenomena in SO(3) , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[92]  Nicolas Gisin,et al.  Direct measurement of superluminal group velocity and signal velocity in an optical fiber. , 2004, Physical review letters.

[93]  D. Suter,et al.  Quantum time-translation machine An experimental realization , 1993 .

[94]  Jeff Tollaksen Non-statistical weak measurements , 2007, SPIE Defense + Commercial Sensing.

[95]  P.J.S.G. Ferreira,et al.  Superoscillations: Faster Than the Nyquist Rate , 2006, IEEE Transactions on Signal Processing.

[96]  J. Morton,et al.  Opening up three quantum boxes causes classically undetectable wavefunction collapse , 2013, Proceedings of the National Academy of Sciences.

[97]  Canonical representation of spherical functions: Sylvester's theorem, Maxwell's multipoles and Majorana's sphere , 2004, math-ph/0408046.

[98]  Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect. , 2006, Physical review letters.

[99]  Michael V Berry,et al.  Exact nonparaxial transmission of subwavelength detail using superoscillations , 2013 .

[100]  David J. Starling,et al.  Interferometric weak value deflections: Quantum and classical treatments , 2009, 0906.4832.

[101]  Kunio Ichinobe Integral Representation for Borel Sum of Divergent Solution to a Certain Non-Kowalevski Type Equation , 2003 .

[102]  Quantum averages of weak values , 2005, quant-ph/0503225.

[103]  D. Vere-Jones Markov Chains , 1972, Nature.

[104]  Y. Aharonov,et al.  Complete description of a quantum system at a given time , 1991 .

[105]  Daniele C. Struppa,et al.  Fundamentals of Algebraic Microlocal Analysis , 1999 .

[106]  Wang Qiao,et al.  A simple model of Aharonov - Berry's superoscillations , 1996 .

[107]  K. Bliokh,et al.  Goos-Hänchen and Imbert-Fedorov shifts of polarized vortex beams. , 2008, Optics letters.

[108]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[109]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .