3-d Calabi--Yau categories for Teichm\"uller theory
暂无分享,去创建一个
[1] Jean,et al. Henri Poincare,为科学服务的一生 , 2006 .
[2] A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations , 1998, math/9806111.
[3] B. M. Fulk. MATH , 1992 .
[4] John Wiley,et al. A wiley-interscience publication , 1972 .
[5] F. Haiden. Legendrian skein algebras and Hall algebras , 2019, Mathematische Annalen.
[6] M. Kontsevich,et al. Motivic Donaldson-Thomas invariants: Summary of results , 2009, 0910.4315.
[7] Emanuele Macrì,et al. Inducing stability conditions , 2007, 0705.3752.
[8] M. Kapranov,et al. Perverse Schobers , 2014, 1411.2772.
[9] P. Kam,et al. : 4 , 1898, You Can Cross the Massacre on Foot.
[10] Arend Bayer,et al. The space of stability conditions on the local projective plane , 2009, 0912.0043.
[11] Y. Qiu,et al. Stability conditions and the A2 quiver , 2014, Advances in Mathematics.
[12] H. Masur. The growth rate of trajectories of a quadratic differential , 1990, Ergodic Theory and Dynamical Systems.
[13] H. Masur. Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential , 1988 .
[14] M. Kontsevich,et al. Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants , 2010, 1006.2706.
[15] Pierre Deligne,et al. Quantum Fields and Strings: A Course for Mathematicians , 1999 .
[16] B. Hodson,et al. The effect of passage in vitro and in vivo on the properties of murine fibrosarcomas. II. Sensitivity to cell-mediated cytotoxicity in vitro. , 1985, British Journal of Cancer.
[17] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.
[18] R. Anno,et al. Spherical DG-functors , 2013, 1309.5035.
[19] I. Smith. Quiver algebras as Fukaya categories , 2013, 1309.0452.
[20] John Harer,et al. Stability of the homology of the mapping class groups of orientable surfaces , 1985 .
[21] Paul Seidel,et al. Graded Lagrangian submanifolds , 1999, math/9903049.
[22] M. Kontsevich,et al. Notes on A∞-Algebras, A∞-Categories and Non-Commutative Geometry , 2006, math/0606241.
[23] Yiwang Chen May. Triangulations of surfaces , 2014 .
[24] Y. Oh,et al. Lagrangian Intersection Floer Theory: Anomaly and Obstruction, Part I , 2010 .
[25] J. Woolf. Some metric properties of spaces of stability conditions , 2011, 1108.2668.
[26] Yinan Song,et al. A theory of generalized Donaldson–Thomas invariants , 2008, 0810.5645.
[27] F. Haiden. An extension of the Siegel space of complex abelian varieties and conjectures on stability structures , 2018, manuscripta mathematica.
[28] I. Smith,et al. Quadratic differentials as stability conditions , 2013, Publications mathématiques de l'IHÉS.
[29] Connected components of the strata of the moduli spaces of quadratic differentials , 2005, math/0506136.
[30] T. Bridgeland. Stability conditions on triangulated categories , 2002, math/0212237.
[31] Geometric transitions and integrable systems , 2005, hep-th/0506196.
[32] Ericka Stricklin-Parker,et al. Ann , 2005 .
[33] Cheol-hyun Cho,et al. NOTES ON KONTSEVICH-SOIBELMAN'S THEOREM ABOUT CYCLIC A∞-ALGEBRAS , 2010 .
[34] Einzelwerken Muster,et al. Invent , 2021, Encyclopedic Dictionary of Archaeology.
[35] Paul Seidel,et al. Fukaya Categories and Picard-Lefschetz Theory , 2008 .
[36] Ben Davison,et al. Motivic Donaldson-Thomas invariants for the one-loop quiver with potential , 2011, 1108.5956.
[37] James Pascaleff,et al. Fukaya categories of higher-genus surfaces and pants decompositions , 2021 .
[38] M. Kontsevich,et al. Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and Mirror Symmetry , 2013, 1303.3253.
[39] J. Harer. The virtual cohomological dimension of the mapping class group of an orientable surface , 1986 .
[40] Maxim Kontsevich,et al. Homological Algebra of Mirror Symmetry , 1994, alg-geom/9411018.
[41] F. Gardiner. Teichmüller Theory and Quadratic Differentials , 1987 .
[42] D. Joyce,et al. Orientation data for moduli spaces of coherent sheaves over Calabi–Yau 3-folds , 2020, 2001.00113.
[43] K. N. Dollman,et al. - 1 , 1743 .
[44] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[45] G. Moore,et al. Spectral Networks , 2012, 1204.4824.