Multitarget Tracking of Distributed Targets Using Histogram-PMHT

Abstract Streit, R. L., Graham, M. L., and Walsh, M. J., Multitarget Tracking of Distributed Targets Using Histogram-PMHT, Digital Signal Processing 12 (2002) 394–404 The expectation-maximization method is applied to derive a stable tracking algorithm that uses the entire display (image) as its input data, completely avoiding peak picking and other data compression steps required to produce traditional point measurements. The algorithm links a histogram interpretation of the intensity data with the tracking method of probabilistic multihypothesis tracking (PMHT) and is thus referred to as H-PMHT. An example of H-PMHT applied to tracking in bearing on a passive sonar broadband display is provided.

[1]  Roy L. Streit,et al.  Tracking on Intensity-Modulated Data Streams , 2000 .

[2]  N. L. Johnson,et al.  Discrete Multivariate Distributions , 1998 .

[3]  R. Redner,et al.  Estimating the parameters of mixture models with modal estimators , 1987 .

[4]  R. Streit,et al.  Probabilistic Multi-Hypothesis Tracking , 1995 .

[5]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .

[6]  Claudio De Persis,et al.  Proceedings of the 38th IEEE conference on decision and control , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[7]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[8]  Roy L. Streit,et al.  Tracking on intensity-modulated sensor data streams , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[9]  G. McLachlan,et al.  Algorithm AS 254: maximum likelihood estimation from grouped and truncated data with finite normal mixture models , 1990 .

[10]  Donald B. Rubin,et al.  Rounding Error in Regression: The Appropriateness of Sheppard's Corrections, , 1983 .

[11]  Y. Bar-Shalom Tracking and data association , 1988 .

[12]  Geoffrey J. McLachlan,et al.  Improving the convergence rate of the em algorithm for a mixture model fitted to grouped truncated data , 1992 .

[13]  Tod Eric Luginbuhl Estimation of general, discrete-time FM processes , 1999 .

[14]  G. McLachlan,et al.  Fitting mixture models to grouped and truncated data via the EM algorithm. , 1988, Biometrics.

[15]  Roy L. Streit,et al.  Maximum likelihood method for probabilistic multihypothesis tracking , 1994, Defense, Security, and Sensing.

[16]  Roy L. Streit,et al.  Multitarget tracking on intensity-modulated sensor data , 2001, SPIE Defense + Commercial Sensing.

[17]  Peter Willett,et al.  Tracking a general, frequency modulated signal in noise , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).