An Ant Colony Optimization Approach to the Degree-Constrained Minimum Spanning Tree Problem

This paper presents the application of an Ant Colony Optimization (ACO) algorithm approach for communications networks design problem. We explore the use of ACO’s for solving a network optimization problem, the degree-constrained minimum spanning tree problem (d-MST), which is a NP-Hard problem. The effectiveness of the proposed algorithm is demonstrated through two kinds of data set: structured hard (SHRD) complete graphs and misleading (M-graph) complete graphs. Empirical results show that ACO performs competitively with other approaches based on evolutionary algorithm (EA) on certain instance set problem.

[1]  M. Gen,et al.  A new approach to the degree-constrained minimum spanning tree problem using genetic algorithm , 1996, 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929).

[2]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[3]  Bryant A. Julstrom,et al.  A weighted coding in a genetic algorithm for the degree-constrained minimum spanning tree problem , 2000, SAC '00.

[4]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[5]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[6]  A. Volgenant A Lagrangean approach to the degree-constrained minimum spanning tree problem , 1989 .

[7]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[8]  Bertrand M. T. Lin,et al.  Ant-Tree: an ant colony optimization approach to the generalized minimum spanning tree problem , 2003, J. Exp. Theor. Artif. Intell..

[9]  Thomas Stützle,et al.  The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances , 2003 .

[10]  R. Prim Shortest connection networks and some generalizations , 1957 .

[11]  Narsingh Deo,et al.  A parallel algorithm for the degree-constrained minimum spanning tree problem using nearest-neighbor chains , 1999, Proceedings Fourth International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN'99).

[12]  David W. Corne,et al.  A New Encoding for the Degree Constrained Minimum Spanning Tree Problem , 2004, KES.

[13]  Andreas T. Ernst,et al.  Comparison of Algorithms for the Degree Constrained Minimum Spanning Tree , 2001, J. Heuristics.

[14]  David W. Corne,et al.  A new evolutionary approach to the degree-constrained minimum spanning tree problem , 1999, IEEE Trans. Evol. Comput..

[15]  Thang Nguyen Bui,et al.  An ant-based algorithm for finding degree-constrained minimum spanning tree , 2006, GECCO.

[16]  Marco Laumanns,et al.  Savings based ant colony optimization for the capacitated minimum spanning tree problem , 2006, Comput. Oper. Res..

[17]  Celso C. Ribeiro,et al.  Variable neighborhood search for the degree-constrained minimum spanning tree problem , 2002, Discret. Appl. Math..

[18]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[19]  Clyde L. Monma,et al.  Transitions in geometric minimum spanning trees , 1991, SCG '91.

[20]  G. Raidl An efficient evolutionary algorithm for the degree-constrained minimum spanning tree problem , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[21]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[22]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[23]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[24]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[25]  Martin W. P. Savelsbergh,et al.  Edge exchanges in the degree-constrained minimum spanning tree problem , 1985, Comput. Oper. Res..

[26]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[27]  M. Savelsbergh,et al.  Edge exchanges in the degree-constrained spanning tree problem , 1985 .

[28]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .